Cargando…
HiCARN: resolution enhancement of Hi-C data using cascading residual networks
MOTIVATION: High throughput chromosome conformation capture (Hi-C) contact matrices are used to predict 3D chromatin structures in eukaryotic cells. High-resolution Hi-C data are less available than low-resolution Hi-C data due to sequencing costs but provide greater insight into the intricate detai...
Autores principales: | Hicks, Parker, Oluwadare, Oluwatosin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048669/ https://www.ncbi.nlm.nih.gov/pubmed/35274679 http://dx.doi.org/10.1093/bioinformatics/btac156 |
Ejemplares similares
-
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Zhang, Yan, et al.
Publicado: (2018) -
HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data
por: Liu, Tong, et al.
Publicado: (2019) -
DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
por: Hong, Hao, et al.
Publicado: (2020) -
An Overview of Methods for Reconstructing 3-D Chromosome and Genome Structures from Hi-C Data
por: Oluwadare, Oluwatosin, et al.
Publicado: (2019) -
HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks
por: Liu, Tong, et al.
Publicado: (2019)