Cargando…
scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets
SUMMARY: A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. Here, we present scGate, an algorithm that automatizes marker-based purification of specific cell populations, without requiring training data or re...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048671/ https://www.ncbi.nlm.nih.gov/pubmed/35258562 http://dx.doi.org/10.1093/bioinformatics/btac141 |
Sumario: | SUMMARY: A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. Here, we present scGate, an algorithm that automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. scGate purifies a cell population of interest using a set of markers organized in a hierarchical structure, akin to gating strategies employed in flow cytometry. scGate outperforms state-of-the-art single-cell classifiers and it can be applied to multiple modalities of single-cell data (e.g. RNA-seq, ATAC-seq, CITE-seq). scGate is implemented as an R package and integrated with the Seurat framework, providing an intuitive tool to isolate cell populations of interest from heterogeneous single-cell datasets. AVAILABILITY AND IMPLEMENTATION: scGate is available as an R package at https://github.com/carmonalab/scGate (https://doi.org/10.5281/zenodo.6202614). Several reproducible workflows describing the main functions and usage of the package on different single-cell modalities, as well as the code to reproduce the benchmark, can be found at https://github.com/carmonalab/scGate.demo (https://doi.org/10.5281/zenodo.6202585) and https://github.com/carmonalab/scGate.benchmark. Test data are available at https://doi.org/10.6084/m9.figshare.16826071. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|