Cargando…
seqgra: principled selection of neural network architectures for genomics prediction tasks
MOTIVATION: Sequence models based on deep neural networks have achieved state-of-the-art performance on regulatory genomics prediction tasks, such as chromatin accessibility and transcription factor binding. But despite their high accuracy, their contributions to a mechanistic understanding of the b...
Autores principales: | Krismer, Konstantin, Hammelman, Jennifer, Gifford, David K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048673/ https://www.ncbi.nlm.nih.gov/pubmed/35191481 http://dx.doi.org/10.1093/bioinformatics/btac101 |
Ejemplares similares
-
spatzie: an R package for identifying significant transcription factor motif co-enrichment from enhancer–promoter interactions
por: Hammelman, Jennifer, et al.
Publicado: (2022) -
Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay
por: Hammelman, Jennifer, et al.
Publicado: (2020) -
Discovering differential genome sequence activity with interpretable and efficient deep learning
por: Hammelman, Jennifer, et al.
Publicado: (2021) -
Convolutional neural network architectures for predicting DNA–protein binding
por: Zeng, Haoyang, et al.
Publicado: (2016) -
IDR2D identifies reproducible genomic interactions
por: Krismer, Konstantin, et al.
Publicado: (2020)