Cargando…
HFBSurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction
MOTIVATION: Cancer survival prediction can greatly assist clinicians in planning patient treatments and improving their life quality. Recent evidence suggests the fusion of multimodal data, such as genomic data and pathological images, is crucial for understanding cancer heterogeneity and enhancing...
Autores principales: | Li, Ruiqing, Wu, Xingqi, Li, Ao, Wang, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048674/ https://www.ncbi.nlm.nih.gov/pubmed/35188177 http://dx.doi.org/10.1093/bioinformatics/btac113 |
Ejemplares similares
-
GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction
por: Wang, Zhiqin, et al.
Publicado: (2021) -
CAMR: cross-aligned multimodal representation learning for cancer survival prediction
por: Wu, Xingqi, et al.
Publicado: (2023) -
Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion
por: Wan, Zhuang, et al.
Publicado: (2023) -
Finger vein recognition based on bilinear fusion of multiscale features
por: Ma, Bin, et al.
Publicado: (2023) -
Bilinear Control Systems
por: Elliott, David
Publicado: (2009)