Cargando…
Supervised capacity preserving mapping: a clustering guided visualization method for scRNA-seq data
MOTIVATION: The rapid development of scRNA-seq technologies enables us to explore the transcriptome at the cell level on a large scale. Recently, various computational methods have been developed to analyze the scRNAseq data, such as clustering and visualization. However, current visualization metho...
Autores principales: | Zhai, Zhiqian, Lei, Yu L, Wang, Rongrong, Xie, Yuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048682/ https://www.ncbi.nlm.nih.gov/pubmed/35253834 http://dx.doi.org/10.1093/bioinformatics/btac131 |
Ejemplares similares
-
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
Domain adaptation for supervised integration of scRNA-seq data
por: Sun, Yutong, et al.
Publicado: (2023) -
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022)