Cargando…
Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer
High performance dielectric polymer materials are a key point for energy storage capacitors, especially film capacitors. In this paper, a sandwich-structured polymer film is constructed to achieve high energy density and high efficiency. High dielectric materials of poly(vinylidene fluoride-hexafluo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048770/ https://www.ncbi.nlm.nih.gov/pubmed/35494602 http://dx.doi.org/10.1039/c9ra09780e |
_version_ | 1784696003649077248 |
---|---|
author | Chen, Fujia Zhou, Yujiu Guo, Jimin Sun, Song Zhao, Yuetao Yang, Yajie Xu, Jianhua |
author_facet | Chen, Fujia Zhou, Yujiu Guo, Jimin Sun, Song Zhao, Yuetao Yang, Yajie Xu, Jianhua |
author_sort | Chen, Fujia |
collection | PubMed |
description | High performance dielectric polymer materials are a key point for energy storage capacitors, especially film capacitors. In this paper, a sandwich-structured polymer film is constructed to achieve high energy density and high efficiency. High dielectric materials of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) doped with barium titanate (BaTiO(3)) are used as the outer layer to achieve a high dielectric constant, and a boron nitride nanosheet (BNNS) layer is inserted between P(VDF-HFP)/BaTiO(3) to obtain a high breakdown field strength of composite films. The results indicate that when the doping amount of the BaTiO(3) nanoparticles reaches 10 wt% and the mass fraction of the BNNS layer is 0.75 wt%, a significant improvement of energy storage performance is obtained. The energy storage density of the P(VDF-HFP)/BaTiO(3)/BNNSs composite film can reach 8.37 J cm(−3), which is higher than 6.65 J cm(−3) of the pure P(VDF-HFP) film. Compared with the P(VDF-HFP) film doped with BaTiO(3), significant improvement of the breakdown field strength (about 148.5%) is achieved and the energy storage density increases 235% accordingly, resulting from the inserted BNNSs layer blocking the growth of electrical branches and suppressing leakage current. This novel sandwich-structured film shows promising future applications for high performance dielectric capacitors. |
format | Online Article Text |
id | pubmed-9048770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90487702022-04-28 Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer Chen, Fujia Zhou, Yujiu Guo, Jimin Sun, Song Zhao, Yuetao Yang, Yajie Xu, Jianhua RSC Adv Chemistry High performance dielectric polymer materials are a key point for energy storage capacitors, especially film capacitors. In this paper, a sandwich-structured polymer film is constructed to achieve high energy density and high efficiency. High dielectric materials of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) doped with barium titanate (BaTiO(3)) are used as the outer layer to achieve a high dielectric constant, and a boron nitride nanosheet (BNNS) layer is inserted between P(VDF-HFP)/BaTiO(3) to obtain a high breakdown field strength of composite films. The results indicate that when the doping amount of the BaTiO(3) nanoparticles reaches 10 wt% and the mass fraction of the BNNS layer is 0.75 wt%, a significant improvement of energy storage performance is obtained. The energy storage density of the P(VDF-HFP)/BaTiO(3)/BNNSs composite film can reach 8.37 J cm(−3), which is higher than 6.65 J cm(−3) of the pure P(VDF-HFP) film. Compared with the P(VDF-HFP) film doped with BaTiO(3), significant improvement of the breakdown field strength (about 148.5%) is achieved and the energy storage density increases 235% accordingly, resulting from the inserted BNNSs layer blocking the growth of electrical branches and suppressing leakage current. This novel sandwich-structured film shows promising future applications for high performance dielectric capacitors. The Royal Society of Chemistry 2020-01-13 /pmc/articles/PMC9048770/ /pubmed/35494602 http://dx.doi.org/10.1039/c9ra09780e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Chen, Fujia Zhou, Yujiu Guo, Jimin Sun, Song Zhao, Yuetao Yang, Yajie Xu, Jianhua Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title | Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title_full | Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title_fullStr | Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title_full_unstemmed | Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title_short | Sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
title_sort | sandwich-structured poly(vinylidene fluoride-hexafluoropropylene) composite film containing a boron nitride nanosheet interlayer |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048770/ https://www.ncbi.nlm.nih.gov/pubmed/35494602 http://dx.doi.org/10.1039/c9ra09780e |
work_keys_str_mv | AT chenfujia sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT zhouyujiu sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT guojimin sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT sunsong sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT zhaoyuetao sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT yangyajie sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer AT xujianhua sandwichstructuredpolyvinylidenefluoridehexafluoropropylenecompositefilmcontainingaboronnitridenanosheetinterlayer |