Cargando…

Reply to the ‘Comment on “Quantum interference effects in biphenyl dithiol for gas detection”’ by A. Grigoriev, H. Jafri and K. Leifer, RSC Adv., 2020, 10, DOI: 10.1039/C9RA00451C

The Comment on our publication [Prasongkit et al., RSC Adv., 2016, 64, 59299] is puzzling since it is well known that biphenyl is fairly non-reactive. Hence, it's not surprising we have low binding energies when the gas molecules were adsorbed on biphenyl dithiol (BPDT). The large binding energ...

Descripción completa

Detalles Bibliográficos
Autor principal: Prasongkit, Jariyanee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048816/
https://www.ncbi.nlm.nih.gov/pubmed/35503274
http://dx.doi.org/10.1039/c9ra06459a
Descripción
Sumario:The Comment on our publication [Prasongkit et al., RSC Adv., 2016, 64, 59299] is puzzling since it is well known that biphenyl is fairly non-reactive. Hence, it's not surprising we have low binding energies when the gas molecules were adsorbed on biphenyl dithiol (BPDT). The large binding energy of NO(2) chemisorbed onto BPDT (∼2.04 eV) in the Comment conflicts with existing theoretical and experimental evidence. Grigoriev et al. have attempted to compare their results to our findings, employing different approximation schemes under the density functional theory (DFT) framework. Here, the effect of taking into account van der Waals (vdW) interactions upon the adsorption mechanism of small aromatic molecules has been discussed.