Cargando…
Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations
Circulating fluidized bed downer reactors (downer reactors) exhibit good heat and mass transfer, and the flow behavior approaches the ideal plug flow. This reactor is superior for catalytic cracking reactions in which the intermediate is the desired product. However, the hydrodynamic behavior and re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048978/ https://www.ncbi.nlm.nih.gov/pubmed/35496099 http://dx.doi.org/10.1039/c9ra10080f |
_version_ | 1784696041382084608 |
---|---|
author | Khongprom, Parinya Ratchasombat, Supawadee Wanchan, Waritnan Bumphenkiattikul, Panut Limtrakul, Sunun |
author_facet | Khongprom, Parinya Ratchasombat, Supawadee Wanchan, Waritnan Bumphenkiattikul, Panut Limtrakul, Sunun |
author_sort | Khongprom, Parinya |
collection | PubMed |
description | Circulating fluidized bed downer reactors (downer reactors) exhibit good heat and mass transfer, and the flow behavior approaches the ideal plug flow. This reactor is superior for catalytic cracking reactions in which the intermediate is the desired product. However, the hydrodynamic behavior and reactor performance have mostly been investigated in small-scale or laboratory-scale reactors. The objective of this study was to investigate the up-scaling of the catalytic cracking of heavy oil in three downer reactors with heights of 5, 15, and 30 m, using computational fluid dynamics simulations. A two-fluid model with the kinetic theory of granular flow was used to predict the hydrodynamics and performance of the chemical reactions. The kinetics of catalytic cracking of heavy oil were described by a 4-lump kinetic model. The chemical performance similarity was identified by using radial and axial distributions of heavy oil conversion, gasoline mass fraction, and gasoline selectivity. The chemical performance similarity cannot be achieved by using the hydrodynamic similarity parameter [Image: see text]. A modified up-scaling parameter was proposed, [Image: see text]. The chemical performance similarity of identical catalytic cracking downer reactors can be achieved with deviation in the range of ±10% and mean relative absolute error of less than 5%. |
format | Online Article Text |
id | pubmed-9048978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90489782022-04-28 Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations Khongprom, Parinya Ratchasombat, Supawadee Wanchan, Waritnan Bumphenkiattikul, Panut Limtrakul, Sunun RSC Adv Chemistry Circulating fluidized bed downer reactors (downer reactors) exhibit good heat and mass transfer, and the flow behavior approaches the ideal plug flow. This reactor is superior for catalytic cracking reactions in which the intermediate is the desired product. However, the hydrodynamic behavior and reactor performance have mostly been investigated in small-scale or laboratory-scale reactors. The objective of this study was to investigate the up-scaling of the catalytic cracking of heavy oil in three downer reactors with heights of 5, 15, and 30 m, using computational fluid dynamics simulations. A two-fluid model with the kinetic theory of granular flow was used to predict the hydrodynamics and performance of the chemical reactions. The kinetics of catalytic cracking of heavy oil were described by a 4-lump kinetic model. The chemical performance similarity was identified by using radial and axial distributions of heavy oil conversion, gasoline mass fraction, and gasoline selectivity. The chemical performance similarity cannot be achieved by using the hydrodynamic similarity parameter [Image: see text]. A modified up-scaling parameter was proposed, [Image: see text]. The chemical performance similarity of identical catalytic cracking downer reactors can be achieved with deviation in the range of ±10% and mean relative absolute error of less than 5%. The Royal Society of Chemistry 2020-01-16 /pmc/articles/PMC9048978/ /pubmed/35496099 http://dx.doi.org/10.1039/c9ra10080f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Khongprom, Parinya Ratchasombat, Supawadee Wanchan, Waritnan Bumphenkiattikul, Panut Limtrakul, Sunun Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title | Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title_full | Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title_fullStr | Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title_full_unstemmed | Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title_short | Scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
title_sort | scaling of a catalytic cracking fluidized bed downer reactor based on computational fluid dynamics simulations |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048978/ https://www.ncbi.nlm.nih.gov/pubmed/35496099 http://dx.doi.org/10.1039/c9ra10080f |
work_keys_str_mv | AT khongpromparinya scalingofacatalyticcrackingfluidizedbeddownerreactorbasedoncomputationalfluiddynamicssimulations AT ratchasombatsupawadee scalingofacatalyticcrackingfluidizedbeddownerreactorbasedoncomputationalfluiddynamicssimulations AT wanchanwaritnan scalingofacatalyticcrackingfluidizedbeddownerreactorbasedoncomputationalfluiddynamicssimulations AT bumphenkiattikulpanut scalingofacatalyticcrackingfluidizedbeddownerreactorbasedoncomputationalfluiddynamicssimulations AT limtrakulsunun scalingofacatalyticcrackingfluidizedbeddownerreactorbasedoncomputationalfluiddynamicssimulations |