Cargando…
Deep learning quantification of vascular pharmacokinetic parameters in mouse brain tumor models
BACKGROUND: Dynamic contrast-enhanced (DCE) MRI is widely used to assess vascular perfusion and permeability in cancer. In small animal applications, conventional modeling of pharmacokinetic (PK) parameters from DCE MRI images is complex and time consuming. This study is aimed at developing a deep l...
Autores principales: | Arledge, Chad A., Sankepalle, Deeksha M., Crowe, William N., Liu, Yang, Wang, Lulu, Zhao, Dawen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048985/ https://www.ncbi.nlm.nih.gov/pubmed/35345331 http://dx.doi.org/10.31083/j.fbl2703099 |
Ejemplares similares
-
Transfer Learning Approach to Vascular Permeability Changes in Brain Metastasis Post-Whole-Brain Radiotherapy
por: Arledge, Chad A., et al.
Publicado: (2023) -
Deep Learning-based Quantification of Anterior Segment OCT Parameters
por: Soh, Zhi Da, et al.
Publicado: (2023) -
3D Ultrasound-Guided Photoacoustic Imaging to Monitor the Effects of Suboptimal Tyrosine Kinase Inhibitor Therapy in Pancreatic Tumors
por: Claus, Abigail, et al.
Publicado: (2022) -
Longitudinal MRI Evaluation of Intracranial Development and Vascular Characteristics of Breast Cancer Brain Metastases in a Mouse Model
por: Zhou, Heling, et al.
Publicado: (2013) -
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning
por: Lo, Julian, et al.
Publicado: (2020)