Cargando…
Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes
The effect of fatty acids with different aliphatic chain lengths on the accelerated vulcanization reaction of isoprene rubber was investigated through the generation of new intermediates composed of dinuclear bridging bidentate zinc/carboxylate complexes. Using the combination of in situ time-resolv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049146/ https://www.ncbi.nlm.nih.gov/pubmed/35495229 http://dx.doi.org/10.1039/c9ra10358a |
_version_ | 1784696081705074688 |
---|---|
author | Junkong, Preeyanuch Morimoto, Rie Miyaji, Kosuke Tohsan, Atitaya Sakaki, Yuta Ikeda, Yuko |
author_facet | Junkong, Preeyanuch Morimoto, Rie Miyaji, Kosuke Tohsan, Atitaya Sakaki, Yuta Ikeda, Yuko |
author_sort | Junkong, Preeyanuch |
collection | PubMed |
description | The effect of fatty acids with different aliphatic chain lengths on the accelerated vulcanization reaction of isoprene rubber was investigated through the generation of new intermediates composed of dinuclear bridging bidentate zinc/carboxylate complexes. Using the combination of in situ time-resolved Fourier-transform infrared spectroscopy and in situ time-resolved zinc K-edge X-ray absorption fine structure spectroscopy, the essential complex structure of the intermediates formed during the vulcanization reaction of isoprene rubber was determined to be independent of the aliphatic chain length of fatty acids. However, the reactivity of arachidic acid with ZnO was found to be low, which prolonged the induction period and curing time, and slowed down the curing rate in the vulcanization of isoprene rubber. These results help to understand the complicated vulcanization reaction of rubber, especially natural rubber, which inherently contains various fatty acids. The results obtained in this study are important for developing well-designed high-performance natural rubber products in the future. |
format | Online Article Text |
id | pubmed-9049146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90491462022-04-29 Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes Junkong, Preeyanuch Morimoto, Rie Miyaji, Kosuke Tohsan, Atitaya Sakaki, Yuta Ikeda, Yuko RSC Adv Chemistry The effect of fatty acids with different aliphatic chain lengths on the accelerated vulcanization reaction of isoprene rubber was investigated through the generation of new intermediates composed of dinuclear bridging bidentate zinc/carboxylate complexes. Using the combination of in situ time-resolved Fourier-transform infrared spectroscopy and in situ time-resolved zinc K-edge X-ray absorption fine structure spectroscopy, the essential complex structure of the intermediates formed during the vulcanization reaction of isoprene rubber was determined to be independent of the aliphatic chain length of fatty acids. However, the reactivity of arachidic acid with ZnO was found to be low, which prolonged the induction period and curing time, and slowed down the curing rate in the vulcanization of isoprene rubber. These results help to understand the complicated vulcanization reaction of rubber, especially natural rubber, which inherently contains various fatty acids. The results obtained in this study are important for developing well-designed high-performance natural rubber products in the future. The Royal Society of Chemistry 2020-01-29 /pmc/articles/PMC9049146/ /pubmed/35495229 http://dx.doi.org/10.1039/c9ra10358a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Junkong, Preeyanuch Morimoto, Rie Miyaji, Kosuke Tohsan, Atitaya Sakaki, Yuta Ikeda, Yuko Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title | Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title_full | Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title_fullStr | Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title_full_unstemmed | Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title_short | Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
title_sort | effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049146/ https://www.ncbi.nlm.nih.gov/pubmed/35495229 http://dx.doi.org/10.1039/c9ra10358a |
work_keys_str_mv | AT junkongpreeyanuch effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes AT morimotorie effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes AT miyajikosuke effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes AT tohsanatitaya effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes AT sakakiyuta effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes AT ikedayuko effectoffattyacidsontheacceleratedsulfurvulcanizationofrubberbyactivezinccarboxylatecomplexes |