Cargando…
Instant classification for the spatially-coded BCI
The spatially-coded SSVEP BCI exploits changes in the topography of the steady-state visual evoked response to visual flicker stimulation in the extrafoveal field of view. In contrast to frequency-coded SSVEP BCIs, the operator does not gaze into any flickering lights; therefore, this paradigm can r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049359/ https://www.ncbi.nlm.nih.gov/pubmed/35482705 http://dx.doi.org/10.1371/journal.pone.0267548 |
Sumario: | The spatially-coded SSVEP BCI exploits changes in the topography of the steady-state visual evoked response to visual flicker stimulation in the extrafoveal field of view. In contrast to frequency-coded SSVEP BCIs, the operator does not gaze into any flickering lights; therefore, this paradigm can reduce visual fatigue. Other advantages include high classification accuracies and a simplified stimulation setup. Previous studies of the paradigm used stimulation intervals of a fixed duration. For frequency-coded SSVEP BCIs, it has been shown that dynamically adjusting the trial duration can increase the system’s information transfer rate (ITR). We therefore investigated whether a similar increase could be achieved for spatially-coded BCIs by applying dynamic stopping methods. To this end we introduced a new stopping criterion which combines the likelihood of the classification result and its stability across larger data windows. Whereas the BCI achieved an average ITR of 28.4±6.4 bits/min with fixed intervals, dynamic intervals increased the performance to 81.1±44.4 bits/min. Users were able to maintain performance up to 60 minutes of continuous operation. We suggest that the dynamic response time might have worked as a kind of temporal feedback which allowed operators to optimize their brain signals and compensate fatigue. |
---|