Cargando…

Instant classification for the spatially-coded BCI

The spatially-coded SSVEP BCI exploits changes in the topography of the steady-state visual evoked response to visual flicker stimulation in the extrafoveal field of view. In contrast to frequency-coded SSVEP BCIs, the operator does not gaze into any flickering lights; therefore, this paradigm can r...

Descripción completa

Detalles Bibliográficos
Autores principales: Maÿe, Alexander, Rauterberg, Raika, Engel, Andreas K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049359/
https://www.ncbi.nlm.nih.gov/pubmed/35482705
http://dx.doi.org/10.1371/journal.pone.0267548
Descripción
Sumario:The spatially-coded SSVEP BCI exploits changes in the topography of the steady-state visual evoked response to visual flicker stimulation in the extrafoveal field of view. In contrast to frequency-coded SSVEP BCIs, the operator does not gaze into any flickering lights; therefore, this paradigm can reduce visual fatigue. Other advantages include high classification accuracies and a simplified stimulation setup. Previous studies of the paradigm used stimulation intervals of a fixed duration. For frequency-coded SSVEP BCIs, it has been shown that dynamically adjusting the trial duration can increase the system’s information transfer rate (ITR). We therefore investigated whether a similar increase could be achieved for spatially-coded BCIs by applying dynamic stopping methods. To this end we introduced a new stopping criterion which combines the likelihood of the classification result and its stability across larger data windows. Whereas the BCI achieved an average ITR of 28.4±6.4 bits/min with fixed intervals, dynamic intervals increased the performance to 81.1±44.4 bits/min. Users were able to maintain performance up to 60 minutes of continuous operation. We suggest that the dynamic response time might have worked as a kind of temporal feedback which allowed operators to optimize their brain signals and compensate fatigue.