Cargando…

Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications

An attempt has been made in the present work to develop hybrid blended composites using epoxy resin (PETEP) derived from waste polyethylene terephthalate (PET) bottles and bio-phenolic (cardanol)-based benzoxazine (CBz) reinforced with functionalized bio-carbon (f-PJC) obtained from Prosopis juliflo...

Descripción completa

Detalles Bibliográficos
Autores principales: Selvaraj, V., Raghavarshini, T. R., Alagar, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049367/
https://www.ncbi.nlm.nih.gov/pubmed/35497429
http://dx.doi.org/10.1039/c9ra08741a
_version_ 1784696128803962880
author Selvaraj, V.
Raghavarshini, T. R.
Alagar, M.
author_facet Selvaraj, V.
Raghavarshini, T. R.
Alagar, M.
author_sort Selvaraj, V.
collection PubMed
description An attempt has been made in the present work to develop hybrid blended composites using epoxy resin (PETEP) derived from waste polyethylene terephthalate (PET) bottles and bio-phenolic (cardanol)-based benzoxazine (CBz) reinforced with functionalized bio-carbon (f-PJC) obtained from Prosopis juliflora (PJ) for high performance applications. The molecular structure, thermal properties, thermo-mechanical behaviour, morphology, surface properties, and corrosion resistance of the composites were studied by different analytical methods, and the obtained results are reported. Dynamic mechanical properties such as the storage modulus (2.591 GPa), loss modulus (1.299 GPa) and cross-linking density (5.1 × 10(7) J mol(−1) K(−1)) were improved in the case of the 5 wt% f-PJC/PETEP–CBz composite compared to those of the PETEP–CBz blended matrix and the f-PJC/PETEP–CBz composites with other weight percentages. Among the studied bio-carbon-reinforced hybrid composites with different weight percentages, the 5 wt% f-PJC/PETEP–CBz composite shows a higher value of char yield (38.37%), with an enhanced glass transition temperature of 285 °C and an improved water contact angle of 111.3°. Results obtained from corrosion studies infer that these hybrid composites exhibit improved corrosion resistance behaviour and effectively protect the surface of mild steel specimens from corrosion. It is concluded that the present work can be considered as an effective method for utilizing waste products and sustainable bio-materials for the development of high performance value-added hybrid composites for thermal and corrosion protection applications.
format Online
Article
Text
id pubmed-9049367
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90493672022-04-29 Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications Selvaraj, V. Raghavarshini, T. R. Alagar, M. RSC Adv Chemistry An attempt has been made in the present work to develop hybrid blended composites using epoxy resin (PETEP) derived from waste polyethylene terephthalate (PET) bottles and bio-phenolic (cardanol)-based benzoxazine (CBz) reinforced with functionalized bio-carbon (f-PJC) obtained from Prosopis juliflora (PJ) for high performance applications. The molecular structure, thermal properties, thermo-mechanical behaviour, morphology, surface properties, and corrosion resistance of the composites were studied by different analytical methods, and the obtained results are reported. Dynamic mechanical properties such as the storage modulus (2.591 GPa), loss modulus (1.299 GPa) and cross-linking density (5.1 × 10(7) J mol(−1) K(−1)) were improved in the case of the 5 wt% f-PJC/PETEP–CBz composite compared to those of the PETEP–CBz blended matrix and the f-PJC/PETEP–CBz composites with other weight percentages. Among the studied bio-carbon-reinforced hybrid composites with different weight percentages, the 5 wt% f-PJC/PETEP–CBz composite shows a higher value of char yield (38.37%), with an enhanced glass transition temperature of 285 °C and an improved water contact angle of 111.3°. Results obtained from corrosion studies infer that these hybrid composites exhibit improved corrosion resistance behaviour and effectively protect the surface of mild steel specimens from corrosion. It is concluded that the present work can be considered as an effective method for utilizing waste products and sustainable bio-materials for the development of high performance value-added hybrid composites for thermal and corrosion protection applications. The Royal Society of Chemistry 2020-02-04 /pmc/articles/PMC9049367/ /pubmed/35497429 http://dx.doi.org/10.1039/c9ra08741a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Selvaraj, V.
Raghavarshini, T. R.
Alagar, M.
Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title_full Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title_fullStr Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title_full_unstemmed Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title_short Development of Prosopis juliflora carbon-reinforced PET bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
title_sort development of prosopis juliflora carbon-reinforced pet bottle waste-based epoxy-blended bio-phenolic benzoxazine composites for advanced applications
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049367/
https://www.ncbi.nlm.nih.gov/pubmed/35497429
http://dx.doi.org/10.1039/c9ra08741a
work_keys_str_mv AT selvarajv developmentofprosopisjulifloracarbonreinforcedpetbottlewastebasedepoxyblendedbiophenolicbenzoxazinecompositesforadvancedapplications
AT raghavarshinitr developmentofprosopisjulifloracarbonreinforcedpetbottlewastebasedepoxyblendedbiophenolicbenzoxazinecompositesforadvancedapplications
AT alagarm developmentofprosopisjulifloracarbonreinforcedpetbottlewastebasedepoxyblendedbiophenolicbenzoxazinecompositesforadvancedapplications