Cargando…
Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy
Pathological examination is the gold standard for breast cancer diagnosis. The recognition of histopathological images of breast cancer has attracted a lot of attention in the field of medical image processing. In this paper, on the base of the Bioimaging 2015 dataset, a two-stage nuclei segmentatio...
Autores principales: | Hu, Hongping, Qiao, Shichang, Hao, Yan, Bai, Yanping, Cheng, Rong, Zhang, Wendong, Zhang, Guojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049370/ https://www.ncbi.nlm.nih.gov/pubmed/35482728 http://dx.doi.org/10.1371/journal.pone.0266973 |
Ejemplares similares
-
Breast Cancer Histopathological Images Recognition Based on Low Dimensional Three-Channel Features
por: Hao, Yan, et al.
Publicado: (2021) -
Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix
por: Hao, Yan, et al.
Publicado: (2022) -
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
por: Paramanandam, Maqlin, et al.
Publicado: (2016) -
Segmentation of Heavily Clustered Nuclei from Histopathological Images
por: Abdolhoseini, Mahmoud, et al.
Publicado: (2019) -
Improved sparse domain super-resolution reconstruction algorithm based on CMUT
por: Wei, Zhiqing, et al.
Publicado: (2023)