Cargando…

Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy

Rare disease clinical trials are constrained to small sample sizes and may lack placebo-control, leading to challenges in drug development. This paper proposes a Bayesian model-based framework for early go/no-go decision making in rare disease drug development, using Duchenne muscular dystrophy (DMD...

Descripción completa

Detalles Bibliográficos
Autores principales: Lennie, Janelle L., Mondick, John T., Gastonguay, Marc R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049549/
https://www.ncbi.nlm.nih.gov/pubmed/35482633
http://dx.doi.org/10.1371/journal.pone.0247286
_version_ 1784696162986491904
author Lennie, Janelle L.
Mondick, John T.
Gastonguay, Marc R.
author_facet Lennie, Janelle L.
Mondick, John T.
Gastonguay, Marc R.
author_sort Lennie, Janelle L.
collection PubMed
description Rare disease clinical trials are constrained to small sample sizes and may lack placebo-control, leading to challenges in drug development. This paper proposes a Bayesian model-based framework for early go/no-go decision making in rare disease drug development, using Duchenne muscular dystrophy (DMD) as an example. Early go/no-go decisions were based on projections of long-term functional outcomes from a Bayesian model-based analysis of short-term trial data informed by prior knowledge based on 6MWT natural history literature data in DMD patients. Frequentist hypothesis tests were also applied as a reference analysis method. A number of combinations of hypothetical trial designs, drug effects and cohort comparison methods were assessed. The proposed Bayesian model-based framework was superior to the frequentist method for making go/no-go decisions across all trial designs and cohort comparison methods in DMD. The average decision accuracy rates across all trial designs for the Bayesian and frequentist analysis methods were 45.8 and 8.98%, respectively. A decision accuracy rate of at least 50% was achieved for 42 and 7% of the trial designs under the Bayesian and frequentist analysis methods, respectively. The frequentist method was limited to the short-term trial data only, while the Bayesian methods were informed with both the short-term data and prior information. The specific results of the DMD case study were limited due to incomplete specification of individual-specific covariates in the natural history literature data and should be reevaluated using a full natural history dataset. These limitations aside, the framework presented provides a proof of concept for the utility of Bayesian model-based methods for decision making in rare disease trials.
format Online
Article
Text
id pubmed-9049549
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-90495492022-04-29 Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy Lennie, Janelle L. Mondick, John T. Gastonguay, Marc R. PLoS One Research Article Rare disease clinical trials are constrained to small sample sizes and may lack placebo-control, leading to challenges in drug development. This paper proposes a Bayesian model-based framework for early go/no-go decision making in rare disease drug development, using Duchenne muscular dystrophy (DMD) as an example. Early go/no-go decisions were based on projections of long-term functional outcomes from a Bayesian model-based analysis of short-term trial data informed by prior knowledge based on 6MWT natural history literature data in DMD patients. Frequentist hypothesis tests were also applied as a reference analysis method. A number of combinations of hypothetical trial designs, drug effects and cohort comparison methods were assessed. The proposed Bayesian model-based framework was superior to the frequentist method for making go/no-go decisions across all trial designs and cohort comparison methods in DMD. The average decision accuracy rates across all trial designs for the Bayesian and frequentist analysis methods were 45.8 and 8.98%, respectively. A decision accuracy rate of at least 50% was achieved for 42 and 7% of the trial designs under the Bayesian and frequentist analysis methods, respectively. The frequentist method was limited to the short-term trial data only, while the Bayesian methods were informed with both the short-term data and prior information. The specific results of the DMD case study were limited due to incomplete specification of individual-specific covariates in the natural history literature data and should be reevaluated using a full natural history dataset. These limitations aside, the framework presented provides a proof of concept for the utility of Bayesian model-based methods for decision making in rare disease trials. Public Library of Science 2022-04-28 /pmc/articles/PMC9049549/ /pubmed/35482633 http://dx.doi.org/10.1371/journal.pone.0247286 Text en © 2022 Lennie et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lennie, Janelle L.
Mondick, John T.
Gastonguay, Marc R.
Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title_full Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title_fullStr Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title_full_unstemmed Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title_short Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy
title_sort bayesian modeling and simulation to inform rare disease drug development early decision-making: application to duchenne muscular dystrophy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049549/
https://www.ncbi.nlm.nih.gov/pubmed/35482633
http://dx.doi.org/10.1371/journal.pone.0247286
work_keys_str_mv AT lenniejanellel bayesianmodelingandsimulationtoinformrarediseasedrugdevelopmentearlydecisionmakingapplicationtoduchennemusculardystrophy
AT mondickjohnt bayesianmodelingandsimulationtoinformrarediseasedrugdevelopmentearlydecisionmakingapplicationtoduchennemusculardystrophy
AT gastonguaymarcr bayesianmodelingandsimulationtoinformrarediseasedrugdevelopmentearlydecisionmakingapplicationtoduchennemusculardystrophy