Cargando…

Magnetic properties of 3d transition metal (Sc–Ni) doped plumbene

Recently, a synthesized two-dimensional layer structured material, so-called “plumbene”, has attracted research interests because of its sizeable spin–orbit coupling. To study the potential of this material as a dilute magnetic semiconductor, we computationally investigate the structure, electronic,...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashemi, Daniel, Iizuka, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049711/
https://www.ncbi.nlm.nih.gov/pubmed/35493913
http://dx.doi.org/10.1039/c9ra10337f
Descripción
Sumario:Recently, a synthesized two-dimensional layer structured material, so-called “plumbene”, has attracted research interests because of its sizeable spin–orbit coupling. To study the potential of this material as a dilute magnetic semiconductor, we computationally investigate the structure, electronic, and magnetic properties of 3d transition metal (TM) doped plumbene using density functional theory (DFT). These calculations show that Ti, V, Cr, Mn, Fe, and Co-doped plumbene systems are magnetic while no magnetic solution was found for Sc and Ni. We also calculate the magnetic couplings between two TM impurities in the system with an impurity concentration of less than 2%. For V, Mn, Fe, Co-doped systems with short inter-impurity distances, we obtain a Curie temperature above room temperature using the mean-field approximation, indicating the potential for magnetic storage and spintronics applications.