Cargando…
Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation
Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,2′-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2-b:4,5-b′]dithiophene)bis-thieno[3,2-b]thiophen]-5,5′-diyl]])) for appl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049750/ https://www.ncbi.nlm.nih.gov/pubmed/35496014 http://dx.doi.org/10.1039/c9ra10009a |
_version_ | 1784696211585892352 |
---|---|
author | Kulshreshtha, Chandramouli Clement, Arul Pascher, Torbjörn Sundström, Villy Matyba, Piotr |
author_facet | Kulshreshtha, Chandramouli Clement, Arul Pascher, Torbjörn Sundström, Villy Matyba, Piotr |
author_sort | Kulshreshtha, Chandramouli |
collection | PubMed |
description | Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,2′-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2-b:4,5-b′]dithiophene)bis-thieno[3,2-b]thiophen]-5,5′-diyl]])) for application in perovskite solar cells. The material performance was tested in a solar cell with an optimized configuration, FTO/SnO(2)/perovskite/PBDTP-DTDPP/Au, and the device showed a power conversion efficiency of 14.78%. The device charge carrier dynamics were investigated using transient absorption spectroscopy. The charge separation and recombination kinetics were determined in a device with PBDTP-DTDPP and the obtained results were compared to a reference device. We find that PBDTP-DTDPP enables similar charge separation time (<∼4.8 ps) to the spiro-OMeTAD but the amount of nongeminate recombination is different. Specifically, we find that the polymeric PBDTP-DTDPP hole-transport layer (HTL) slows-down the second-order recombination much less than spiro-OMeTAD. This effect is of particular importance in studying the charge transportation in optimized solar cell devices with diketopyrrole based HTL materials. |
format | Online Article Text |
id | pubmed-9049750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90497502022-04-29 Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation Kulshreshtha, Chandramouli Clement, Arul Pascher, Torbjörn Sundström, Villy Matyba, Piotr RSC Adv Chemistry Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,2′-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2-b:4,5-b′]dithiophene)bis-thieno[3,2-b]thiophen]-5,5′-diyl]])) for application in perovskite solar cells. The material performance was tested in a solar cell with an optimized configuration, FTO/SnO(2)/perovskite/PBDTP-DTDPP/Au, and the device showed a power conversion efficiency of 14.78%. The device charge carrier dynamics were investigated using transient absorption spectroscopy. The charge separation and recombination kinetics were determined in a device with PBDTP-DTDPP and the obtained results were compared to a reference device. We find that PBDTP-DTDPP enables similar charge separation time (<∼4.8 ps) to the spiro-OMeTAD but the amount of nongeminate recombination is different. Specifically, we find that the polymeric PBDTP-DTDPP hole-transport layer (HTL) slows-down the second-order recombination much less than spiro-OMeTAD. This effect is of particular importance in studying the charge transportation in optimized solar cell devices with diketopyrrole based HTL materials. The Royal Society of Chemistry 2020-02-12 /pmc/articles/PMC9049750/ /pubmed/35496014 http://dx.doi.org/10.1039/c9ra10009a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Kulshreshtha, Chandramouli Clement, Arul Pascher, Torbjörn Sundström, Villy Matyba, Piotr Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title | Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title_full | Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title_fullStr | Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title_full_unstemmed | Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title_short | Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
title_sort | investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049750/ https://www.ncbi.nlm.nih.gov/pubmed/35496014 http://dx.doi.org/10.1039/c9ra10009a |
work_keys_str_mv | AT kulshreshthachandramouli investigatingultrafastcarrierdynamicsinperovskitesolarcellswithanextendedpconjugatedpolymericdiketopyrrolopyrrolelayerforholetransportation AT clementarul investigatingultrafastcarrierdynamicsinperovskitesolarcellswithanextendedpconjugatedpolymericdiketopyrrolopyrrolelayerforholetransportation AT paschertorbjorn investigatingultrafastcarrierdynamicsinperovskitesolarcellswithanextendedpconjugatedpolymericdiketopyrrolopyrrolelayerforholetransportation AT sundstromvilly investigatingultrafastcarrierdynamicsinperovskitesolarcellswithanextendedpconjugatedpolymericdiketopyrrolopyrrolelayerforholetransportation AT matybapiotr investigatingultrafastcarrierdynamicsinperovskitesolarcellswithanextendedpconjugatedpolymericdiketopyrrolopyrrolelayerforholetransportation |