Cargando…
Synthesis, characterization, and properties of a novel aromatic ester-based polybenzoxazine
Polybenzoxazines with molecular design flexibility have excellent properties by using suitable raw materials. A new benzoxazine monomer terephthalic acid bis-[2-(6-methyl-4H-benzo[e][1,3]oxazin-3-yl)]ethyl ester (TMBE) with bis-ester groups has been synthesized from the simple esterification reactio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049764/ https://www.ncbi.nlm.nih.gov/pubmed/35493916 http://dx.doi.org/10.1039/c9ra10191h |
Sumario: | Polybenzoxazines with molecular design flexibility have excellent properties by using suitable raw materials. A new benzoxazine monomer terephthalic acid bis-[2-(6-methyl-4H-benzo[e][1,3]oxazin-3-yl)]ethyl ester (TMBE) with bis-ester groups has been synthesized from the simple esterification reaction of terephthaloyl chloride and 2-(6-methyl-4H-benzo[e][1,3]oxazin-3-yl)-ethanol (MB-OH). The chemical structure of TMBE was characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy ((1)H-NMR, (13)C-NMR). Polymerization behavior of TMBE was studied by differential scanning calorimetry (DSC) and FT-IR after each cure stage. The cross-linked polybenzoxazine (PTMBE) gave a transparent film through the thermal casting method. The dynamic mechanical analysis of PTMBE showed that the T(g) was 110 °C. Thermogravimetric analysis reveals better thermal stability as evidenced by the 5% and 10% weight-loss temperatures (T(d5) and T(d10)) of PTMBE, which were 263 and 289 °C, respectively, with a char yield of 27% at 800 °C. The tensile test of the film revealed that the elongation at break was up to 14.2%. |
---|