Cargando…

First-principles study of coadsorption of Cu(2+) and Cl(−) ions on the Cu (110) surface

Motivated by the importance of Cl(−) in the industrial electrolytic Cu plating process, we study the coadsorption of Cl(−) and Cu(2+) on the Cu (110) surface using first-principles density functional theory (DFT) calculations. We treat the solvent implicitly by solving the linearized Poisson–Boltzma...

Descripción completa

Detalles Bibliográficos
Autores principales: Khoo, Khoong Hong, Srinivasan, Bharathi Madurai, Hariharaputran, Ramanarayan, Joshi, Chaitanya Amol, Tai-Yen, David Wu, Jin, Hongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049886/
https://www.ncbi.nlm.nih.gov/pubmed/35497814
http://dx.doi.org/10.1039/c9ra10072e
Descripción
Sumario:Motivated by the importance of Cl(−) in the industrial electrolytic Cu plating process, we study the coadsorption of Cl(−) and Cu(2+) on the Cu (110) surface using first-principles density functional theory (DFT) calculations. We treat the solvent implicitly by solving the linearized Poisson–Boltzmann equation and evaluate the electrochemical potential and energetics of ions with the computational hydrogen electrode approach. We find that Cl(−) alone is hardly adsorbed at sufficiently negative electrochemical potentials μ(Cl) but stable phases with half and full Cl(−) coverage was observed as μ(Cl) is made more positive. For Cl(−) and Cu(2+) coadsorption, we identified five stable phases for electrode biases between −2V < U(SHE) < 2V, with two being Cl(−) adsorption phases, two being Cl(−) + Cu(2+) coadsorption phases and one being a pure Cu(2+) adsorption phase. In general, the free energy of adsorption for the most stable phases at larger |U(SHE)| are dominated by the energy required to move electrons between the system and the Fermi level of the electrode, while that at smaller |U(SHE)| are largely dictated by the binding strength between Cl(−) and Cu(2+) adsorbates on the Cu (110) substrate. In addition, by studying the free energy of adsorption of Cu(2+) onto pristine and Cl(−) covered Cu (110), we conclude that the introduction of Cl(−) ion does not improve the energetics of Cu(2+) adsorption onto Cu (110).