Cargando…
Measuring the Electromagnetic Field of the Human Brain at a Distance Using a Shielded Electromagnetic Field Channel
Introduction The electromagnetic field (EMF) of the human brain generated by the movement of ions in the brain can be measured in a novel manner. The measurement can be completed through the skull, in a non-contact, non-invasive, continuous manner using a lightweight helmet. This investigation was c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049916/ https://www.ncbi.nlm.nih.gov/pubmed/35494955 http://dx.doi.org/10.7759/cureus.23626 |
Sumario: | Introduction The electromagnetic field (EMF) of the human brain generated by the movement of ions in the brain can be measured in a novel manner. The measurement can be completed through the skull, in a non-contact, non-invasive, continuous manner using a lightweight helmet. This investigation was conducted to determine if brain activity from movement and thoughts of movement can be measured at a distance and if that measurement can be readily evaluated at a distance using shielding with a shielded helmet and a shielded EMF channel surrounding a sensor. Methods Non-clinical human subject volunteers donned a lightweight sensor helmet and performed a variety of specific tasks synchronized with an audible tone generated by a metronome. Constructs were created to determine if the human subjects’ brain EMF can be recorded at a distance using sensors surrounded by shielding acting similar to a waveguide in an EMF channel connected to a shielded helmet. Results The EMF sensors appeared to record brain electromagnetic activity as it is funneled into a shielded channel acting as a waveguide at a considerable distance including distances as far as 63 cm away. Conclusion Specific brain EMFs from movement, thoughts of movement, and emotional thought can be continuously measured in a non-contact fashion at a distance using an EMF waveguide approach with an EMF channel and shielded helmet. |
---|