Cargando…

Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms

Emergence of resistant bacteria encourages us to develop new antibiotics and strategies to compensate for the different mechanisms of resistance they acquire. One of the defense mechanisms of resistant bacteria is the formation of biofilms. Herein we show that benzimidazolium salts with various flex...

Descripción completa

Detalles Bibliográficos
Autores principales: Tessier, Jérémie, Schmitzer, Andreea R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050073/
https://www.ncbi.nlm.nih.gov/pubmed/35497239
http://dx.doi.org/10.1039/d0ra00738b
_version_ 1784696285990748160
author Tessier, Jérémie
Schmitzer, Andreea R.
author_facet Tessier, Jérémie
Schmitzer, Andreea R.
author_sort Tessier, Jérémie
collection PubMed
description Emergence of resistant bacteria encourages us to develop new antibiotics and strategies to compensate for the different mechanisms of resistance they acquire. One of the defense mechanisms of resistant bacteria is the formation of biofilms. Herein we show that benzimidazolium salts with various flexible or rigid side chains act as strong antibiotic and antibiofilm agents. We show that their antibiofilm activity is due to their capacity to destroy the biofilm matrix and the bacterial cellular membranes. These compounds are able to avoid the formation of biofilms and disperse mature biofilms showing a universal use in the treatment of biofilm-associated infections.
format Online
Article
Text
id pubmed-9050073
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90500732022-04-29 Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms Tessier, Jérémie Schmitzer, Andreea R. RSC Adv Chemistry Emergence of resistant bacteria encourages us to develop new antibiotics and strategies to compensate for the different mechanisms of resistance they acquire. One of the defense mechanisms of resistant bacteria is the formation of biofilms. Herein we show that benzimidazolium salts with various flexible or rigid side chains act as strong antibiotic and antibiofilm agents. We show that their antibiofilm activity is due to their capacity to destroy the biofilm matrix and the bacterial cellular membranes. These compounds are able to avoid the formation of biofilms and disperse mature biofilms showing a universal use in the treatment of biofilm-associated infections. The Royal Society of Chemistry 2020-03-04 /pmc/articles/PMC9050073/ /pubmed/35497239 http://dx.doi.org/10.1039/d0ra00738b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Tessier, Jérémie
Schmitzer, Andreea R.
Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title_full Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title_fullStr Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title_full_unstemmed Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title_short Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms
title_sort benzimidazolium salts prevent and disrupt methicillin-resistant staphylococcus aureus biofilms
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050073/
https://www.ncbi.nlm.nih.gov/pubmed/35497239
http://dx.doi.org/10.1039/d0ra00738b
work_keys_str_mv AT tessierjeremie benzimidazoliumsaltspreventanddisruptmethicillinresistantstaphylococcusaureusbiofilms
AT schmitzerandreear benzimidazoliumsaltspreventanddisruptmethicillinresistantstaphylococcusaureusbiofilms