Cargando…
Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR
The issue of reverse osmosis concentrate (ROC) has attracted significant attention due to its complex and toxic constituents under high salinity conditions. In this work, a three-stage membrane-aerated biofilm reactor (MABR) system was constructed to treat such wastewater without an external carbon...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050234/ https://www.ncbi.nlm.nih.gov/pubmed/35498598 http://dx.doi.org/10.1039/c9ra10574c |
_version_ | 1784696316686761984 |
---|---|
author | Liu, Rukang Wang, Qin Li, Mei Liu, Jun Zhang, Wei Lan, Meichao Du, Chunyu Sun, Zhiye Zhao, Dong Li, Baoan |
author_facet | Liu, Rukang Wang, Qin Li, Mei Liu, Jun Zhang, Wei Lan, Meichao Du, Chunyu Sun, Zhiye Zhao, Dong Li, Baoan |
author_sort | Liu, Rukang |
collection | PubMed |
description | The issue of reverse osmosis concentrate (ROC) has attracted significant attention due to its complex and toxic constituents under high salinity conditions. In this work, a three-stage membrane-aerated biofilm reactor (MABR) system was constructed to treat such wastewater without an external carbon source. The effects of operating conditions including aeration pressure, reflux ratio, temperature and hydraulic retention time on the removal performance of the integrated system were evaluated and optimized. Under the optimal operating parameters, the removal efficiencies of COD, NH(4)(+)–N, NO(3)(−)–N, and TN reached 69.36%, 80.95%, 54.55%, and 54.36%, respectively. Three-dimensional fluorescence analysis indicated that humic acid was mostly removed from raw water. Moreover, microbial diversity analysis indicated that the microbial community structure of each reactor could be individually modulated to exert different functions and enhance the system performance. The integrated MABR system exhibits great feasibility and potential for the advanced treatment of coal chemical ROC. |
format | Online Article Text |
id | pubmed-9050234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90502342022-04-29 Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR Liu, Rukang Wang, Qin Li, Mei Liu, Jun Zhang, Wei Lan, Meichao Du, Chunyu Sun, Zhiye Zhao, Dong Li, Baoan RSC Adv Chemistry The issue of reverse osmosis concentrate (ROC) has attracted significant attention due to its complex and toxic constituents under high salinity conditions. In this work, a three-stage membrane-aerated biofilm reactor (MABR) system was constructed to treat such wastewater without an external carbon source. The effects of operating conditions including aeration pressure, reflux ratio, temperature and hydraulic retention time on the removal performance of the integrated system were evaluated and optimized. Under the optimal operating parameters, the removal efficiencies of COD, NH(4)(+)–N, NO(3)(−)–N, and TN reached 69.36%, 80.95%, 54.55%, and 54.36%, respectively. Three-dimensional fluorescence analysis indicated that humic acid was mostly removed from raw water. Moreover, microbial diversity analysis indicated that the microbial community structure of each reactor could be individually modulated to exert different functions and enhance the system performance. The integrated MABR system exhibits great feasibility and potential for the advanced treatment of coal chemical ROC. The Royal Society of Chemistry 2020-03-10 /pmc/articles/PMC9050234/ /pubmed/35498598 http://dx.doi.org/10.1039/c9ra10574c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Liu, Rukang Wang, Qin Li, Mei Liu, Jun Zhang, Wei Lan, Meichao Du, Chunyu Sun, Zhiye Zhao, Dong Li, Baoan Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title | Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title_full | Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title_fullStr | Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title_full_unstemmed | Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title_short | Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR |
title_sort | advanced treatment of coal chemical reverse osmosis concentrate with three-stage mabr |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050234/ https://www.ncbi.nlm.nih.gov/pubmed/35498598 http://dx.doi.org/10.1039/c9ra10574c |
work_keys_str_mv | AT liurukang advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT wangqin advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT limei advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT liujun advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT zhangwei advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT lanmeichao advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT duchunyu advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT sunzhiye advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT zhaodong advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr AT libaoan advancedtreatmentofcoalchemicalreverseosmosisconcentratewiththreestagemabr |