Cargando…
Digital Forensics for Malware Classification: An Approach for Binary Code to Pixel Vector Transition
The most often reported danger to computer security is malware. Antivirus company AV-Test Institute reports that more than 5 million malware samples are created each day. A malware classification method is frequently required to prioritize these occurrences because security teams cannot address all...
Autores principales: | Naeem, Muhammad Rehan, Amin, Rashid, Alshamrani, Sultan S., Alshehri, Abdullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050294/ https://www.ncbi.nlm.nih.gov/pubmed/35498213 http://dx.doi.org/10.1155/2022/6294058 |
Ejemplares similares
-
Malware Forensics: Investigating and Analyzing Malicious Code
por: Aquilina, James M, et al.
Publicado: (2008) -
Malware Forensics Field Guide for Windows Systems: Digital Forensics Field Guides
por: Malin, Cameron H, et al.
Publicado: (2010) -
Malware forensics field guide for Linux systems
por: Malin, Cameron H, et al.
Publicado: (2014) -
Linux malware incident response: an excerpt from malware forensic field guide for Linux systems
por: Malin, Cameron H, et al.
Publicado: (2013) -
A Novel and Effective Brain Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers
por: Kibriya, Hareem, et al.
Publicado: (2022)