Cargando…
Identification and Classification of Depressed Mental State for End-User over Social Media
In researching social network data and depression, it is often necessary to manually label depressed and non-depressed users, which is time-consuming and labor-intensive. The aim of this study is that it explores the relationship between social network data and depression. It can also contribute to...
Autores principales: | Kumar, Akhilesh, Thakare, Anuradha, Bhende, Manisha, Sinha, Amit Kumar, Alguno, Arnold C., Kumar, Yekula Prasanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050301/ https://www.ncbi.nlm.nih.gov/pubmed/35498179 http://dx.doi.org/10.1155/2022/8755922 |
Ejemplares similares
-
Classification of Bioinformatics EEG Data Signals to Identify Depressed Brain State Using CNN Model
por: Thakare, Anuradha, et al.
Publicado: (2022) -
Homogeneous Decision Community Extraction Based on End-User Mental Behavior on Social Media
por: Gupta, Suneet, et al.
Publicado: (2022) -
Retracted: Identification and Classification of Depressed Mental State for End-User over Social Media
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Attention Layer-Based Multidimensional Feature Extraction for Diagnosis of Lung Cancer
por: Bhende, Manisha, et al.
Publicado: (2022) -
Deep Learning-Based Real-Time Discriminate Correlation Analysis for Breast Cancer Detection
por: Bhende, Manisha, et al.
Publicado: (2022)