Cargando…
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
Recommender systems are designed to deal with structured and unstructured information and help the user effectively retrieve needed information from the vast number of web pages. Dynamic information of users has been proven useful for learning representations in the recommender system. In this paper...
Autores principales: | Sun, Ninghua, Chen, Tao, Ran, Longya, Guo, Wenshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050307/ https://www.ncbi.nlm.nih.gov/pubmed/35498210 http://dx.doi.org/10.1155/2022/5484119 |
Ejemplares similares
-
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks
por: Li, Dan, et al.
Publicado: (2021) -
Graph Neural Network and Context-Aware Based User Behavior Prediction and Recommendation System Research
por: Gao, Qian, et al.
Publicado: (2020) -
Degree-Aware Graph Neural Network Quantization
por: Fan, Ziqin, et al.
Publicado: (2023) -
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023)