Cargando…
Content-Based Image Retrieval Using Colour, Gray, Advanced Texture, Shape Features, and Random Forest Classifier with Optimized Particle Swarm Optimization
In this paper, a new approach for Content-Based Image Retrieval (CBIR) has been addressed by extracting colour, gray, advanced texture, and shape features for input query images. Contour-based shape feature extraction methods and image moment extraction techniques are used to extract the shape featu...
Autores principales: | Subramanian, Manoharan, Lingamuthu, Velmurugan, Venkatesan, Chandran, Perumal, Sasikumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050319/ https://www.ncbi.nlm.nih.gov/pubmed/35496641 http://dx.doi.org/10.1155/2022/3211793 |
Ejemplares similares
-
Stochastic Optimized Relevance Feedback Particle Swarm Optimization for Content Based Image Retrieval
por: Imran, Muhammad, et al.
Publicado: (2014) -
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
por: Mohamad, Mohd Saberi, et al.
Publicado: (2013) -
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
por: Sun, Tao, et al.
Publicado: (2017) -
Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization
por: Xie, Lei, et al.
Publicado: (2021) -
Prevention of Cyber Security with the Internet of Things Using Particle Swarm Optimization
por: Alterazi, Hassan A., et al.
Publicado: (2022)