Cargando…

Convergent access to bis-1,2,4-triazinyl-2,2′-bipyridines (BTBPs) and 2,2′-bipyridines via a Pd-catalyzed Ullman-type reaction

Multidentate, soft-Lewis basic, complexant scaffolds have displayed significant potential in the discrete speciation of the minor actinides from the neutron-absorbing lanthanides resident in spent nuclear fuel. Efforts to devise convergent synthetic strategies to targets of interest to improve liqui...

Descripción completa

Detalles Bibliográficos
Autores principales: Waters, Gabrielle D., Carrick, Jesse D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050362/
https://www.ncbi.nlm.nih.gov/pubmed/35492897
http://dx.doi.org/10.1039/d0ra00673d
Descripción
Sumario:Multidentate, soft-Lewis basic, complexant scaffolds have displayed significant potential in the discrete speciation of the minor actinides from the neutron-absorbing lanthanides resident in spent nuclear fuel. Efforts to devise convergent synthetic strategies to targets of interest to improve liquid–liquid separation outcomes continue, but significant challenges to improve solubility in process-relevant diluents to effectively define meaningful structure–activity relationships remain. In the current work, a synthetic method to achieve the challenging 2,2′-bipyridine bond of the bis-1,2,4-triazinyl-2,2′-bipyridine (BTBP) complexant class leveraging a Pd-catalyzed Ullman-type coupling is reported. This convergent strategy improves upon earlier work focused on linear synthetic access to the BTBP complexant moiety. Method optimization, relevant substrate scope and application, as well as a preliminary mechanistic interrogation are reported herein.