Cargando…
Porous SnO(2) nanostructure with a high specific surface area for improved electrochemical performance
Tin oxide (SnO(2)) has been attractive as an alternative to carbon-based anode materials because of its fairly high theoretical capacity during cycling. However, SnO(2) has critical drawbacks, such as poor cycle stability caused by a large volumetric variation during the alloying/de-alloying reactio...
Autores principales: | Kim, Hyeona, Kim, Min-Cheol, Kim, Sung-beom, Kim, Yo-Seob, Choi, Jin-Hyeok, Park, Kyung-Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050381/ https://www.ncbi.nlm.nih.gov/pubmed/35492898 http://dx.doi.org/10.1039/d0ra00531b |
Ejemplares similares
-
Enhanced electrochemical performance of MoS(2)/graphene nanosheet nanocomposites
por: Choi, Jin-Hyeok, et al.
Publicado: (2020) -
Synthesis of Au/SnO(2) nanostructures allowing process variable control
por: Choi, Myung Sik, et al.
Publicado: (2020) -
Interfacial Doping of Heteroatom in Porous SnO(2) for Highly
Sensitive Surface Properties
por: Zhang, Yuelan, et al.
Publicado: (2018) -
Transition metal doped Sb@SnO(2) nanoparticles for photochemical and electrochemical oxidation of cysteine
por: Kim, Yeonwoo, et al.
Publicado: (2018) -
Anodic SnO(2) porous nanostructures with rich grain boundaries for efficient CO(2) electroreduction to formate
por: Ma, Ruizhen, et al.
Publicado: (2020)