Cargando…
The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats
Secondary metabolites present in medicinal plants offer a golden opportunity to fight different ailments, such as cancer, infections, diabetes, neurodegenerative and cardiovascular diseases, etc. The traditional use of various parts of Fraxinus xanthoxyloides is known to serve as a cure for pneumoni...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050420/ https://www.ncbi.nlm.nih.gov/pubmed/35498604 http://dx.doi.org/10.1039/c9ra08729j |
_version_ | 1784696361213493248 |
---|---|
author | Younis, Tahira Jabeen, Faiza Jafri, Laila Rasul, Azhar Manzoor, Maleeha Shaheen, Mussarat Riaz, Ammara |
author_facet | Younis, Tahira Jabeen, Faiza Jafri, Laila Rasul, Azhar Manzoor, Maleeha Shaheen, Mussarat Riaz, Ammara |
author_sort | Younis, Tahira |
collection | PubMed |
description | Secondary metabolites present in medicinal plants offer a golden opportunity to fight different ailments, such as cancer, infections, diabetes, neurodegenerative and cardiovascular diseases, etc. The traditional use of various parts of Fraxinus xanthoxyloides is known to serve as a cure for pneumonia, pain, jaundice, malaria, fracturing of bones, and internal wounds. The aim of this research was to validate the antioxidant and cardio-protective properties of F. xanthoxyloides leaves. The antioxidant potential was evaluated by employing different assays on the crude methanol extract, as well as its derived fractions. The extract/fraction that showed significant activity was further investigated for the presence of phytochemicals using high performance liquid chromatography-diode array detector (HPLC-DAD) analysis and also for cardio-protective potential. In the case of the antioxidant potential, the ethyl acetate fraction (FXE) was demonstrated to have the most potent total antioxidant (26.3 ± 2.4 AAE μg mg(−1)), hydroxyl ion scavenging (IC(50) = 7.9 ± 0.9 μg mg(−1)), ferrous ion chelating (IC(50) = 28.2 ± 2.7 μg mg(−1)) and nitric oxide scavenging (IC(50) = 32.5 ± 2.9 μg mg(−1)) effects among all of the extract/fractions, whereas in the case of DPPH (IC(50) = 17.5 ± 2.7 μg mg(−1)) and the reducing power assay (16.7 ± 2.8 GAE μg mg(−1)), promising antioxidant potential was shown by the n-butanol fraction. The presence of different concentrations of rutin, caffeic acid, catechin, and gallic acid was observed in the high performance liquid chromatography (HPLC) profile of FXE. Furthermore, in in vivo experimentation, the oral administration of FXE and silymarin significantly restored the CCl(4)-induced increase in the levels of creatine kinase, creatine kinase-MB, cholesterol and triacylglycerides when compared with the untreated group. FXE and silymarin treatment also restored the levels of the tissue antioxidant enzymes, for example glutathione-S-transferase, glutathione reductase, catalase, peroxidase and superoxide dismutase. Furthermore, significantly lower levels of reduced glutathione and enhanced levels of lipid peroxides, hydrogen peroxide, comet length and DNA damages were observed after CCl(4) administration in the cardiac tissue of rats. FXE was able to restore these biochemical parameters, as well as the histological status of heart tissue. Based upon the present investigation, we concluded that F. xanthoxyloides leaves may have cardio-protective potential similar to silymarin against CCl(4) induced injuries owing to its antioxidant constituents. |
format | Online Article Text |
id | pubmed-9050420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90504202022-04-29 The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats Younis, Tahira Jabeen, Faiza Jafri, Laila Rasul, Azhar Manzoor, Maleeha Shaheen, Mussarat Riaz, Ammara RSC Adv Chemistry Secondary metabolites present in medicinal plants offer a golden opportunity to fight different ailments, such as cancer, infections, diabetes, neurodegenerative and cardiovascular diseases, etc. The traditional use of various parts of Fraxinus xanthoxyloides is known to serve as a cure for pneumonia, pain, jaundice, malaria, fracturing of bones, and internal wounds. The aim of this research was to validate the antioxidant and cardio-protective properties of F. xanthoxyloides leaves. The antioxidant potential was evaluated by employing different assays on the crude methanol extract, as well as its derived fractions. The extract/fraction that showed significant activity was further investigated for the presence of phytochemicals using high performance liquid chromatography-diode array detector (HPLC-DAD) analysis and also for cardio-protective potential. In the case of the antioxidant potential, the ethyl acetate fraction (FXE) was demonstrated to have the most potent total antioxidant (26.3 ± 2.4 AAE μg mg(−1)), hydroxyl ion scavenging (IC(50) = 7.9 ± 0.9 μg mg(−1)), ferrous ion chelating (IC(50) = 28.2 ± 2.7 μg mg(−1)) and nitric oxide scavenging (IC(50) = 32.5 ± 2.9 μg mg(−1)) effects among all of the extract/fractions, whereas in the case of DPPH (IC(50) = 17.5 ± 2.7 μg mg(−1)) and the reducing power assay (16.7 ± 2.8 GAE μg mg(−1)), promising antioxidant potential was shown by the n-butanol fraction. The presence of different concentrations of rutin, caffeic acid, catechin, and gallic acid was observed in the high performance liquid chromatography (HPLC) profile of FXE. Furthermore, in in vivo experimentation, the oral administration of FXE and silymarin significantly restored the CCl(4)-induced increase in the levels of creatine kinase, creatine kinase-MB, cholesterol and triacylglycerides when compared with the untreated group. FXE and silymarin treatment also restored the levels of the tissue antioxidant enzymes, for example glutathione-S-transferase, glutathione reductase, catalase, peroxidase and superoxide dismutase. Furthermore, significantly lower levels of reduced glutathione and enhanced levels of lipid peroxides, hydrogen peroxide, comet length and DNA damages were observed after CCl(4) administration in the cardiac tissue of rats. FXE was able to restore these biochemical parameters, as well as the histological status of heart tissue. Based upon the present investigation, we concluded that F. xanthoxyloides leaves may have cardio-protective potential similar to silymarin against CCl(4) induced injuries owing to its antioxidant constituents. The Royal Society of Chemistry 2020-03-10 /pmc/articles/PMC9050420/ /pubmed/35498604 http://dx.doi.org/10.1039/c9ra08729j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Younis, Tahira Jabeen, Faiza Jafri, Laila Rasul, Azhar Manzoor, Maleeha Shaheen, Mussarat Riaz, Ammara The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title | The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title_full | The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title_fullStr | The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title_full_unstemmed | The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title_short | The protective potential of a Fraxinus xanthoxyloides ethyl acetate fraction against CCl(4)-induced oxidative stress in the cardiac tissue of rats |
title_sort | protective potential of a fraxinus xanthoxyloides ethyl acetate fraction against ccl(4)-induced oxidative stress in the cardiac tissue of rats |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050420/ https://www.ncbi.nlm.nih.gov/pubmed/35498604 http://dx.doi.org/10.1039/c9ra08729j |
work_keys_str_mv | AT younistahira theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT jabeenfaiza theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT jafrilaila theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT rasulazhar theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT manzoormaleeha theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT shaheenmussarat theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT riazammara theprotectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT younistahira protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT jabeenfaiza protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT jafrilaila protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT rasulazhar protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT manzoormaleeha protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT shaheenmussarat protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats AT riazammara protectivepotentialofafraxinusxanthoxyloidesethylacetatefractionagainstccl4inducedoxidativestressinthecardiactissueofrats |