Cargando…
Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay
Contamination of milk by mycotoxins is a serious problem worldwide. Herein, we focused on the detection of aflatoxin B1 (AflB1) using a paper microfluidic device fabricated with specific aptamers as biorecognition elements. The fabrication process resulted in the generation of a leak proof microflui...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050516/ https://www.ncbi.nlm.nih.gov/pubmed/35496625 http://dx.doi.org/10.1039/d0ra00062k |
_version_ | 1784696384508657664 |
---|---|
author | Kasoju, Aruna Shrikrishna, Narlawar Sagar Shahdeo, Deepshikha Khan, Azmat Ali Alanazi, Amer M. Gandhi, Sonu |
author_facet | Kasoju, Aruna Shrikrishna, Narlawar Sagar Shahdeo, Deepshikha Khan, Azmat Ali Alanazi, Amer M. Gandhi, Sonu |
author_sort | Kasoju, Aruna |
collection | PubMed |
description | Contamination of milk by mycotoxins is a serious problem worldwide. Herein, we focused on the detection of aflatoxin B1 (AflB1) using a paper microfluidic device fabricated with specific aptamers as biorecognition elements. The fabrication process resulted in the generation of a leak proof microfluidic device where two zones were designed: control and test. Detection is achieved by color change when aflatoxin reacts with an aptamer followed by salt induced aggregation of gold nanoparticles. Specific aptamers for aflatoxin B1 were immobilized successfully onto the surface of gold nanoparticles. Biophysical characterization of the conjugated AuNPs–aptamer was done by UV-vis spectroscopy, DLS (dynamic light scattering), TEM (transmission electron microscopy). Under optimal conditions, the microfluidic device showed an excellent response for aflatoxin B1 detection in the range of 1 pM to 1 μM with a detection limit of up to 10 nM in spiked samples. Disadvantages associated with conventional techniques of ELISA were overcome by this one step detection technique with low operation cost, simple instrumentation, and user-friendly format with no interference due to chromatographic separation. The developed microfluidic paper-based analytical device (μPAD) can provide a tool for on-site detection of food toxins in less than a minute which is the main requirement for both qualitative and quantitative analysis in food safety and environmental monitoring. |
format | Online Article Text |
id | pubmed-9050516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90505162022-04-29 Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay Kasoju, Aruna Shrikrishna, Narlawar Sagar Shahdeo, Deepshikha Khan, Azmat Ali Alanazi, Amer M. Gandhi, Sonu RSC Adv Chemistry Contamination of milk by mycotoxins is a serious problem worldwide. Herein, we focused on the detection of aflatoxin B1 (AflB1) using a paper microfluidic device fabricated with specific aptamers as biorecognition elements. The fabrication process resulted in the generation of a leak proof microfluidic device where two zones were designed: control and test. Detection is achieved by color change when aflatoxin reacts with an aptamer followed by salt induced aggregation of gold nanoparticles. Specific aptamers for aflatoxin B1 were immobilized successfully onto the surface of gold nanoparticles. Biophysical characterization of the conjugated AuNPs–aptamer was done by UV-vis spectroscopy, DLS (dynamic light scattering), TEM (transmission electron microscopy). Under optimal conditions, the microfluidic device showed an excellent response for aflatoxin B1 detection in the range of 1 pM to 1 μM with a detection limit of up to 10 nM in spiked samples. Disadvantages associated with conventional techniques of ELISA were overcome by this one step detection technique with low operation cost, simple instrumentation, and user-friendly format with no interference due to chromatographic separation. The developed microfluidic paper-based analytical device (μPAD) can provide a tool for on-site detection of food toxins in less than a minute which is the main requirement for both qualitative and quantitative analysis in food safety and environmental monitoring. The Royal Society of Chemistry 2020-03-24 /pmc/articles/PMC9050516/ /pubmed/35496625 http://dx.doi.org/10.1039/d0ra00062k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Kasoju, Aruna Shrikrishna, Narlawar Sagar Shahdeo, Deepshikha Khan, Azmat Ali Alanazi, Amer M. Gandhi, Sonu Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title | Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title_full | Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title_fullStr | Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title_full_unstemmed | Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title_short | Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay |
title_sort | microfluidic paper device for rapid detection of aflatoxin b1 using an aptamer based colorimetric assay |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050516/ https://www.ncbi.nlm.nih.gov/pubmed/35496625 http://dx.doi.org/10.1039/d0ra00062k |
work_keys_str_mv | AT kasojuaruna microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay AT shrikrishnanarlawarsagar microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay AT shahdeodeepshikha microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay AT khanazmatali microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay AT alanaziamerm microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay AT gandhisonu microfluidicpaperdeviceforrapiddetectionofaflatoxinb1usinganaptamerbasedcolorimetricassay |