Cargando…

Dynamics of quantum droplets in an external harmonic confinement

Recent theoretical and experimental results show that one-dimensional (1D) weakly interacting atomic Bose-Bose mixtures with repulsive interspecies mean field (MF) interaction are stabilized by attractive quadratic beyond-mean-field (BMF) effects into self-bound quantum droplet (QD) in free space. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Pathak, Maitri R., Nath, Ajay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050709/
https://www.ncbi.nlm.nih.gov/pubmed/35484174
http://dx.doi.org/10.1038/s41598-022-10468-6
Descripción
Sumario:Recent theoretical and experimental results show that one-dimensional (1D) weakly interacting atomic Bose-Bose mixtures with repulsive interspecies mean field (MF) interaction are stabilized by attractive quadratic beyond-mean-field (BMF) effects into self-bound quantum droplet (QD) in free space. Here, we construct an exact analytical model to investigate the structure and dynamics of QDs in presence of external harmonic confinement by solving the 1D extended Gross–Pitäevskii equation (eGPE) with temporal variation of MF and BMF interactions. The model provides the analytical form of wavefunction, phase, MF and BMF nonlinearities. The generation of QDs and interesting droplet to soliton transition in presence of regular/expulsive parabolic traps by taking the comparable MF and BMF interactions are illustrated. We derive the phase diagram of the droplet-soliton phase transition between amplitude of MF, BMF interactions and harmonic oscillator frequency. The strength and form of oscillator frequency are identified as key parameter for tuning the compression, fragmentation and transport of droplets. Finally, the stability of the obtained solutions are confirmed from Vakhitov–Kolokolov (VK) criterion and are found stable.