Cargando…

Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity

Hollow gold nanoparticles have great potential for localized surface plasmon resonance (LSPR) sensing. In this study, we investigated the refractive index (RI) sensitivities of single hollow gold nanosphere (HAuNS) with thin Au shell and inner cavity and single solid gold nanosphere (AuNS) in media...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Yun A, Ha, Ji Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050728/
https://www.ncbi.nlm.nih.gov/pubmed/35484278
http://dx.doi.org/10.1038/s41598-022-11197-6
Descripción
Sumario:Hollow gold nanoparticles have great potential for localized surface plasmon resonance (LSPR) sensing. In this study, we investigated the refractive index (RI) sensitivities of single hollow gold nanosphere (HAuNS) with thin Au shell and inner cavity and single solid gold nanosphere (AuNS) in media with different RIs. The HAuNS exhibited a remarkable improvement in the RI sensitivity than the AuNS of similar size. The increased RI sensitivity of HAuNSs was ascribed to plasmon coupling between the inner and outer surface of the Au nanoshell. We then investigated the homogeneous LSPR scattering inflection points (IFs) to better understand the RI sensitivity of single HAuNS. The LSPR IF at the long wavelength side exhibited a better RI sensitivity compared to the wavelength shift of its counterpart LSPR maximum peak. Furthermore, the single HAuNS showed a remarkable improvement in the RI sensitivity at the LSPR IFs when compared to the AuNS of similar size. Therefore, we provided a new insight into the effect of inner cavity of HAuNS on the RI sensitivity of homogeneous LSPR IFs for use in LSPR-based biosensors.