Cargando…

Assessment of the Effects of Inhibition or Induction of CYP2C19 and CYP2C9 Enzymes, or Inhibition of OAT3, on the Pharmacokinetics of Abrocitinib and Its Metabolites in Healthy Individuals

BACKGROUND AND OBJECTIVE: Abrocitinib is a Janus kinase 1-selective inhibitor for the treatment of moderate-to-severe atopic dermatitis. Abrocitinib is eliminated primarily by metabolism involving cytochrome P450 (CYP) enzymes. Abrocitinib pharmacologic activity is attributable to the unbound concen...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoxing, Dowty, Martin E., Wouters, Ann, Tatulych, Svitlana, Connell, Carol A., Le, Vu H., Tripathy, Sakambari, O’Gorman, Melissa T., Winton, Jennifer A., Yin, Natalie, Valdez, Hernan, Malhotra, Bimal K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050788/
https://www.ncbi.nlm.nih.gov/pubmed/35226304
http://dx.doi.org/10.1007/s13318-021-00745-6
Descripción
Sumario:BACKGROUND AND OBJECTIVE: Abrocitinib is a Janus kinase 1-selective inhibitor for the treatment of moderate-to-severe atopic dermatitis. Abrocitinib is eliminated primarily by metabolism involving cytochrome P450 (CYP) enzymes. Abrocitinib pharmacologic activity is attributable to the unbound concentrations of the parent molecule and 2 active metabolites, which are substrates of organic anion transporter 3 (OAT3). The sum of potency-adjusted unbound exposures of abrocitinib and its 2 active metabolites is termed the abrocitinib active moiety. We evaluated effects of CYP inhibition, CYP induction, and OAT3 inhibition on the pharmacokinetics of abrocitinib, its metabolites, and active moiety. METHODS: Three fixed-sequence, open-label, phase I studies in healthy adult volunteers examined the drug–drug interactions (DDIs) of oral abrocitinib with fluvoxamine and fluconazole, rifampin, and probenecid. RESULTS: Co-administration of abrocitinib with fluvoxamine or fluconazole increased the area under the plasma concentration–time curve from time 0 to infinity (AUC(inf)) of the unbound active moiety of abrocitinib by 91% and 155%, respectively. Co-administration with rifampin decreased the unbound active moiety AUC(inf) by 56%. The OAT3 inhibitor probenecid increased the AUC(inf) of the unbound active moiety by 66%. CONCLUSIONS: It is important to consider the effects of DDIs on the abrocitinib active moiety when making dosing recommendations. Co-administration of strong CYP2C19/2C9 inhibitors or CYP inducers impacted exposure to the abrocitinib active moiety. A dose reduction by half is recommended if abrocitinib is co-administered with strong CYP2C19 inhibitors, whereas co-administration with strong CYP2C19/2C9 inducers is not recommended. No dose adjustment is required when abrocitinib is administered with OAT3 inhibitors. CLINICAL TRIALS REGISTRATION IDS: NCT03634345, NCT03637790, NCT03937258 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13318-021-00745-6.