Cargando…

Enhancement performance of application mussel-biomimetic adhesive primer for dentin adhesives

In this study, we evaluated bioinspired adhesive primers for durable adhesion between dentin and composite resins. N-3,4-Dihydroxyphenethyl methacrylamide (DMA) primer monomer (small bifunctional group molecules containing catechol and acrylic groups at opposite ends) was prepared to mimic the inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jiahui, Zhao, Ying, Tian, Zilu, Zhu, Jiufu, Shi, Zuosen, Cui, Zhanchen, Zhu, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050876/
https://www.ncbi.nlm.nih.gov/pubmed/35496601
http://dx.doi.org/10.1039/c9ra10992g
Descripción
Sumario:In this study, we evaluated bioinspired adhesive primers for durable adhesion between dentin and composite resins. N-3,4-Dihydroxyphenethyl methacrylamide (DMA) primer monomer (small bifunctional group molecules containing catechol and acrylic groups at opposite ends) was prepared to mimic the interaction between the catechol group and the mineral interface of marine mussels. The shear bonding strength, microleakage, degree of conversion, contact angle, and compatibility were tested. The shear bond strength was significantly improved, and microleakage was diminished after the application of the DMA primer. However, the degree of conversion was decreased. The wettability of the dentin was enhanced, and the DMA primer showed no negative influence on cell proliferation. The results of this study showed the possibility of using DMA primers in clinical practice. This may provide a new strategy for improving adhesion durability.