Cargando…
Quantifying lung cancer heterogeneity using novel CT features: a cross-institute study
BACKGROUND: Radiomics-based image metrics are not used in the clinic despite the rapidly growing literature. We selected eight promising radiomic features and validated their value in decoding lung cancer heterogeneity. METHODS: CT images of 236 lung cancer patients were obtained from three differen...
Autores principales: | Wang, Zixing, Yang, Cuihong, Han, Wei, Sui, Xin, Zheng, Fuling, Xue, Fang, Xu, Xiaoli, Wu, Peng, Chen, Yali, Gu, Wentao, Song, Wei, Jiang, Jingmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050978/ https://www.ncbi.nlm.nih.gov/pubmed/35482262 http://dx.doi.org/10.1186/s13244-022-01204-9 |
Ejemplares similares
-
Optimizing the timing of diagnostic testing after positive findings in lung cancer screening: a proof of concept radiomics study
por: Wang, Zixing, et al.
Publicado: (2021) -
Can CT Screening Give Rise to a Beneficial Stage Shift in Lung Cancer Patients? Systematic Review and Meta-Analysis
por: Wang, Zixing, et al.
Publicado: (2016) -
Quantifying tumour heterogeneity with CT
por: Ganeshan, Balaji, et al.
Publicado: (2013) -
Effects of population aging on the mortality burden of related cancers in urban and rural areas of China, 2004–2017: a population-based study
por: Chen, Yali, et al.
Publicado: (2022) -
Predictions of mortality related to four major cancers in China, 2020 to 2030
por: Li, Ning, et al.
Publicado: (2021)