Cargando…
Artificial Intelligence Radiotherapy Planning: Automatic Segmentation of Human Organs in CT Images Based on a Modified Convolutional Neural Network
OBJECTIVE: Precise segmentation of human organs and anatomic structures (especially organs at risk, OARs) is the basis and prerequisite for the treatment planning of radiation therapy. In order to ensure rapid and accurate design of radiotherapy treatment planning, an automatic organ segmentation te...
Autores principales: | Shen, Guosheng, Jin, Xiaodong, Sun, Chao, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051073/ https://www.ncbi.nlm.nih.gov/pubmed/35493368 http://dx.doi.org/10.3389/fpubh.2022.813135 |
Ejemplares similares
-
Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks
por: Liu, Zhikai, et al.
Publicado: (2021) -
Clinical evaluation on automatic segmentation results of convolutional neural networks in rectal cancer radiotherapy
por: Li, Jing, et al.
Publicado: (2023) -
DeepHeartCT: A fully automatic artificial intelligence hybrid framework based on convolutional neural network and multi-atlas segmentation for multi-structure cardiac computed tomography angiography image segmentation
por: Bui, Vy, et al.
Publicado: (2022) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Hussain, Raabid, et al.
Publicado: (2021)