Cargando…
Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization
A self-organizing map (SOM) is a powerful unsupervised learning neural network for analyzing high-dimensional data in various applications. However, hardware implementation of SOM is challenging because of the complexity in calculating the similarities and determining neighborhoods. We experimentall...
Autores principales: | Wang, Rui, Shi, Tuo, Zhang, Xumeng, Wei, Jinsong, Lu, Jian, Zhu, Jiaxue, Wu, Zuheng, Liu, Qi, Liu, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051161/ https://www.ncbi.nlm.nih.gov/pubmed/35484107 http://dx.doi.org/10.1038/s41467-022-29411-4 |
Ejemplares similares
-
Amorphous ITZO-Based Selector Device for Memristor Crossbar Array
por: Kim, Ki Han, et al.
Publicado: (2023) -
Research progress on solutions to the sneak path issue in memristor crossbar arrays
por: Shi, Lingyun, et al.
Publicado: (2020) -
Memristor Crossbar Circuits Implementing Equilibrium Propagation for On-Device Learning
por: Oh, Seokjin, et al.
Publicado: (2023) -
Single-Readout High-Density Memristor Crossbar
por: Zidan, M. A., et al.
Publicado: (2016) -
Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing
por: Wang, Rui, et al.
Publicado: (2018)