Cargando…
Causative Classification of Ischemic Stroke by the Machine Learning Algorithm Random Forests
BACKGROUND: Prognosis, recurrence rate, and secondary prevention strategies differ by different etiologies in acute ischemic stroke. However, identifying its cause is challenging. OBJECTIVE: This study aimed to develop a model to identify the cause of stroke using machine learning (ML) methods and t...
Autores principales: | Wang, Jianan, Gong, Xiaoxian, Chen, Hongfang, Zhong, Wansi, Chen, Yi, Zhou, Ying, Zhang, Wenhua, He, Yaode, Lou, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051333/ https://www.ncbi.nlm.nih.gov/pubmed/35493925 http://dx.doi.org/10.3389/fnagi.2022.788637 |
Ejemplares similares
-
Prediction of Acute Myocardial Infarction in Asian Patients With Acute Ischemic Stroke: The CTRAN Score
por: Chen, Luowei, et al.
Publicado: (2022) -
Endovascular Treatment for Minor Acute Ischemic Strokes With Large Vessel Occlusion
por: Xue, Rui, et al.
Publicado: (2022) -
Undertreatment of Anticoagulant Therapy in Hospitalized Acute Ischemic Stroke Patients With Atrial Fibrillation
por: Gong, Xiaoxian, et al.
Publicado: (2022) -
Prediction of large vessel occlusion for ischaemic stroke by using the machine learning model random forests
por: Wang, Jianan, et al.
Publicado: (2021) -
Association of Proton Pump Inhibitor Prophylaxis on Clinical Outcome in Acute Ischemic Stroke in China: A Multicenter Retrospective Cohort Study
por: Fang, Lei, et al.
Publicado: (2022)