Cargando…
The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings
Biofouling refers to the undesirable process that leads to the accumulation of microorganisms such as bacteria or fungi on substrates. This is one of the major concerns associated with several components of our regular life such as food, health, water and energy. In the healthcare sector, biofouling...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051384/ https://www.ncbi.nlm.nih.gov/pubmed/35493017 http://dx.doi.org/10.1039/c9ra10018k |
_version_ | 1784696543154012160 |
---|---|
author | Arul, Amutha Sivagnanam, Subramaniyam Dey, Ananta Mukherjee, Oindrilla Ghosh, Soumyajit Das, Priyadip |
author_facet | Arul, Amutha Sivagnanam, Subramaniyam Dey, Ananta Mukherjee, Oindrilla Ghosh, Soumyajit Das, Priyadip |
author_sort | Arul, Amutha |
collection | PubMed |
description | Biofouling refers to the undesirable process that leads to the accumulation of microorganisms such as bacteria or fungi on substrates. This is one of the major concerns associated with several components of our regular life such as food, health, water and energy. In the healthcare sector, biofouling on medical devices is known to cause infections, which are often resistant to conventional antibiotics and lead to increase in the number of hospital and surgery-related deaths. One of the better ways to tackle the problem of biofouling is the development of smart antifouling materials that can produce a biocompatible, non-toxic, eco-friendly and functional coating and maintain a biological environment without any adverse effect. To this end, in the present study, we have reported the design and synthesis of two simple chemically modified peptides, namely, PA1 (PFB-VVD) and PA2 (PFB-LLE). The design as well as the amino acid sequence of the peptides contains three basic components that enable their ability to (i) self-assemble into functional coatings, (ii) bind with the desired surface via the bi-dentate coordination of dicarboxylate groups and (iii) exhibit antifouling activity and generate a non-toxic biocompatible supramolecular coating on the desired surface. PA1 having aspartic acid as the anchoring moiety exhibits better antifouling activity compared to PA2 that has glutamic acid as the anchoring moiety. This is probably due to the greater adhesive force or binding affinity of aspartic acid to the examined surface compared to that of glutamic acid, as confirmed by force measurement studies using AFM. Most importantly, the simple drop-coating method promises great advantages due to its ease of operation, which leads to a reduction in the production cost and increase in the scope of commercialization. To the best of our knowledge, this is the first attempt to develop an ultra-short peptide-based smart antifouling material with a dicarboxylate group as the surface binding moiety. Furthermore, these findings promise to provide further insights into antifouling mechanisms in the future by the development of a smart material using a dicarboxylate group as an anchoring moiety. |
format | Online Article Text |
id | pubmed-9051384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90513842022-04-29 The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings Arul, Amutha Sivagnanam, Subramaniyam Dey, Ananta Mukherjee, Oindrilla Ghosh, Soumyajit Das, Priyadip RSC Adv Chemistry Biofouling refers to the undesirable process that leads to the accumulation of microorganisms such as bacteria or fungi on substrates. This is one of the major concerns associated with several components of our regular life such as food, health, water and energy. In the healthcare sector, biofouling on medical devices is known to cause infections, which are often resistant to conventional antibiotics and lead to increase in the number of hospital and surgery-related deaths. One of the better ways to tackle the problem of biofouling is the development of smart antifouling materials that can produce a biocompatible, non-toxic, eco-friendly and functional coating and maintain a biological environment without any adverse effect. To this end, in the present study, we have reported the design and synthesis of two simple chemically modified peptides, namely, PA1 (PFB-VVD) and PA2 (PFB-LLE). The design as well as the amino acid sequence of the peptides contains three basic components that enable their ability to (i) self-assemble into functional coatings, (ii) bind with the desired surface via the bi-dentate coordination of dicarboxylate groups and (iii) exhibit antifouling activity and generate a non-toxic biocompatible supramolecular coating on the desired surface. PA1 having aspartic acid as the anchoring moiety exhibits better antifouling activity compared to PA2 that has glutamic acid as the anchoring moiety. This is probably due to the greater adhesive force or binding affinity of aspartic acid to the examined surface compared to that of glutamic acid, as confirmed by force measurement studies using AFM. Most importantly, the simple drop-coating method promises great advantages due to its ease of operation, which leads to a reduction in the production cost and increase in the scope of commercialization. To the best of our knowledge, this is the first attempt to develop an ultra-short peptide-based smart antifouling material with a dicarboxylate group as the surface binding moiety. Furthermore, these findings promise to provide further insights into antifouling mechanisms in the future by the development of a smart material using a dicarboxylate group as an anchoring moiety. The Royal Society of Chemistry 2020-04-01 /pmc/articles/PMC9051384/ /pubmed/35493017 http://dx.doi.org/10.1039/c9ra10018k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Arul, Amutha Sivagnanam, Subramaniyam Dey, Ananta Mukherjee, Oindrilla Ghosh, Soumyajit Das, Priyadip The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title | The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title_full | The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title_fullStr | The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title_full_unstemmed | The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title_short | The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
title_sort | design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051384/ https://www.ncbi.nlm.nih.gov/pubmed/35493017 http://dx.doi.org/10.1039/c9ra10018k |
work_keys_str_mv | AT arulamutha thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT sivagnanamsubramaniyam thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT deyananta thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT mukherjeeoindrilla thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT ghoshsoumyajit thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT daspriyadip thedesignanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT arulamutha designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT sivagnanamsubramaniyam designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT deyananta designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT mukherjeeoindrilla designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT ghoshsoumyajit designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings AT daspriyadip designanddevelopmentofshortpeptidebasednovelsmartmaterialstopreventfoulingbytheformationofnontoxicandbiocompatiblecoatings |