Cargando…
Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network
It is widely believed that effective prediction of wastewater treatment results (WTR) is conducive to precise control of aeration amount in the wastewater treatment process (WTP). Conventional biochemical mechanism-driven approaches are highly dependent on complicated and redundant model parameters,...
Autores principales: | Guo, Zhiwei, Du, Boxin, Wang, Jianhui, Shen, Yu, Li, Qiao, Feng, Dong, Gao, Xu, Wang, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051414/ https://www.ncbi.nlm.nih.gov/pubmed/35493006 http://dx.doi.org/10.1039/d0ra00736f |
Ejemplares similares
-
Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks
por: Sajedian, Iman, et al.
Publicado: (2019) -
Deeply-recursive convolutional neural network for Raman spectra identification
por: Zhou, Wei, et al.
Publicado: (2022) -
Protein secondary structure prediction with context convolutional neural network
por: Long, Shiyang, et al.
Publicado: (2019) -
A combined convolutional and recurrent neural network for enhanced glaucoma detection
por: Gheisari, Soheila, et al.
Publicado: (2021) -
Data-driven emergence of convolutional structure in neural networks
por: Ingrosso, Alessandro, et al.
Publicado: (2022)