Cargando…
Physics-informed neural networks for myocardial perfusion MRI quantification
Tracer-kinetic models allow for the quantification of kinetic parameters such as blood flow from dynamic contrast-enhanced magnetic resonance (MR) images. Fitting the observed data with multi-compartment exchange models is desirable, as they are physiologically plausible and resolve directly for blo...
Autores principales: | van Herten, Rudolf L.M., Chiribiri, Amedeo, Breeuwer, Marcel, Veta, Mitko, Scannell, Cian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051528/ https://www.ncbi.nlm.nih.gov/pubmed/35299005 http://dx.doi.org/10.1016/j.media.2022.102399 |
Ejemplares similares
-
Deep‐Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI
por: Scannell, Cian M., et al.
Publicado: (2019) -
Hierarchical Bayesian myocardial perfusion quantification
por: Scannell, Cian M., et al.
Publicado: (2020) -
Feasibility of free-breathing quantitative myocardial perfusion using multi-echo Dixon magnetic resonance imaging
por: Scannell, Cian M., et al.
Publicado: (2020) -
Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis
por: Alskaf, Ebraham, et al.
Publicado: (2022) -
The relationship between spatial resolution levels and quantitative myocardial perfusion
por: Zarinabad, Niloufar, et al.
Publicado: (2013)