Cargando…
Surrogate-based optimization with adaptive sampling for microfluidic concentration gradient generator design
This paper presents a surrogate-based optimization (SBO) method with adaptive sampling for designing microfluidic concentration gradient generators (μCGGs) to meet prescribed concentration gradients (CGs). An efficient physics-based component model (PBCM) is used to generate data for Kriging-based s...
Autores principales: | Yang, Haizhou, Hong, Seong Hyeon, ZhG, Rei, Wang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051574/ https://www.ncbi.nlm.nih.gov/pubmed/35493014 http://dx.doi.org/10.1039/d0ra01586e |
Ejemplares similares
-
Electrochemical Generation and Detection of Transient Concentration Gradients in Microfluidic Channels. Theoretical and Experimental Investigations
por: Abadie, Thomas, et al.
Publicado: (2019) -
Microfluidic Concentric Gradient Generator Design for High-Throughput Cell-Based Studies
por: Ezra Tsur, Elishai, et al.
Publicado: (2017) -
Machine-Learning-Enabled Design and Manipulation of a Microfluidic Concentration Gradient Generator
por: Zhang, Naiyin, et al.
Publicado: (2022) -
An Online Classification Method for Fault Diagnosis of Railway Turnouts
por: Ou, Dongxiu, et al.
Publicado: (2020) -
Finger-Actuated Microfluidic Concentration Gradient Generator Compatible with a Microplate
por: Park, Juhwan, et al.
Publicado: (2019)