Cargando…
Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking
The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051635/ https://www.ncbi.nlm.nih.gov/pubmed/35494233 http://dx.doi.org/10.1016/j.isci.2022.104197 |
_version_ | 1784696603497463808 |
---|---|
author | Naor, Tal Nogin, Yevgeni Nehme, Elias Ferdman, Boris Weiss, Lucien E. Alalouf, Onit Shechtman, Yoav |
author_facet | Naor, Tal Nogin, Yevgeni Nehme, Elias Ferdman, Boris Weiss, Lucien E. Alalouf, Onit Shechtman, Yoav |
author_sort | Naor, Tal |
collection | PubMed |
description | The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. |
format | Online Article Text |
id | pubmed-9051635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90516352022-04-30 Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking Naor, Tal Nogin, Yevgeni Nehme, Elias Ferdman, Boris Weiss, Lucien E. Alalouf, Onit Shechtman, Yoav iScience Article The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. Elsevier 2022-04-04 /pmc/articles/PMC9051635/ /pubmed/35494233 http://dx.doi.org/10.1016/j.isci.2022.104197 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Naor, Tal Nogin, Yevgeni Nehme, Elias Ferdman, Boris Weiss, Lucien E. Alalouf, Onit Shechtman, Yoav Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title_full | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title_fullStr | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title_full_unstemmed | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title_short | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
title_sort | quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3d tracking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051635/ https://www.ncbi.nlm.nih.gov/pubmed/35494233 http://dx.doi.org/10.1016/j.isci.2022.104197 |
work_keys_str_mv | AT naortal quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT noginyevgeni quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT nehmeelias quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT ferdmanboris quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT weissluciene quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT alaloufonit quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking AT shechtmanyoav quantifyingcellcycledependentchromatindynamicsduringinterphasebylive3dtracking |