Cargando…
Aerobic oxidative synthesis of quinazolinones and benzothiazoles in the presence of laccase/DDQ as a bioinspired cooperative catalytic system under mild conditions
The current study applied laccase/DDQ as a bioinspired cooperative catalytic system for the synthesis of quinazolinones (80–95% yield) and benzothiazoles (65–98% yield) using air or O(2) as ideal oxidants in aqueous media at ambient temperature. The aerobic oxidative cyclization reactions occur in t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051882/ https://www.ncbi.nlm.nih.gov/pubmed/35498453 http://dx.doi.org/10.1039/c9ra10303a |
Sumario: | The current study applied laccase/DDQ as a bioinspired cooperative catalytic system for the synthesis of quinazolinones (80–95% yield) and benzothiazoles (65–98% yield) using air or O(2) as ideal oxidants in aqueous media at ambient temperature. The aerobic oxidative cyclization reactions occur in two steps: (i) chemical cyclization; (ii) chemoenzymatic oxidation. These methods are more environment-friendly, efficient, simple and practical than other reported methods due to the use of O(2) as an oxidant, laccase as an eco-friendly biocatalyst, aqueous media as the solvent and free from any toxic transition metal and halide catalysts. Therefore, these methods can be applied in pharmaceutical and other sensitive synthetic procedures. |
---|