Cargando…
Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor
Gas–liquid–liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance. However, there remains a lack of insight into the dynamics and controllability of water droplet fusion assisted by gas bubbles, particularly scaling laws for use...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051941/ https://www.ncbi.nlm.nih.gov/pubmed/35498473 http://dx.doi.org/10.1039/d0ra00913j |
_version_ | 1784696675756933120 |
---|---|
author | Hao, Yanyan Jin, Nan Wang, Qingqiang Zhou, Yufei Zhao, Yuchao Zhang, Xunli Lü, Hongying |
author_facet | Hao, Yanyan Jin, Nan Wang, Qingqiang Zhou, Yufei Zhao, Yuchao Zhang, Xunli Lü, Hongying |
author_sort | Hao, Yanyan |
collection | PubMed |
description | Gas–liquid–liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance. However, there remains a lack of insight into the dynamics and controllability of water droplet fusion assisted by gas bubbles, particularly scaling laws for use in the design and operation of complex multiphase flow processes. In the present work, a microfluidic reactor with three T-junctions was employed to sequentially generate gas bubbles and then fuse two dispersed water droplets. The formation of the dispersed phase was divided into multiple stages, and the bubble/droplet size was correlated with operating parameters. The formation of the second dispersed droplet at the third T-junction was accompanied by the fusion of the two dispersed water droplets that were formed. It revealed a two-stage process (i.e. drainage and fusion) for the two droplets to fuse while becoming mature by breaking-up with the secondary water supply stream. In addition, a droplet contact model was employed to understand the influence on the process stability and uniformity of the merged/fused droplets by varying the surfactant concentration (in oil), the viscosity of the water phase, and the flow rates of different fluids. The study provides a deeper understanding of the droplet fusion characteristics on gas–liquid–liquid three-phase flow in microreactors for a wide range of applications. |
format | Online Article Text |
id | pubmed-9051941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90519412022-04-29 Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor Hao, Yanyan Jin, Nan Wang, Qingqiang Zhou, Yufei Zhao, Yuchao Zhang, Xunli Lü, Hongying RSC Adv Chemistry Gas–liquid–liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance. However, there remains a lack of insight into the dynamics and controllability of water droplet fusion assisted by gas bubbles, particularly scaling laws for use in the design and operation of complex multiphase flow processes. In the present work, a microfluidic reactor with three T-junctions was employed to sequentially generate gas bubbles and then fuse two dispersed water droplets. The formation of the dispersed phase was divided into multiple stages, and the bubble/droplet size was correlated with operating parameters. The formation of the second dispersed droplet at the third T-junction was accompanied by the fusion of the two dispersed water droplets that were formed. It revealed a two-stage process (i.e. drainage and fusion) for the two droplets to fuse while becoming mature by breaking-up with the secondary water supply stream. In addition, a droplet contact model was employed to understand the influence on the process stability and uniformity of the merged/fused droplets by varying the surfactant concentration (in oil), the viscosity of the water phase, and the flow rates of different fluids. The study provides a deeper understanding of the droplet fusion characteristics on gas–liquid–liquid three-phase flow in microreactors for a wide range of applications. The Royal Society of Chemistry 2020-04-07 /pmc/articles/PMC9051941/ /pubmed/35498473 http://dx.doi.org/10.1039/d0ra00913j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Hao, Yanyan Jin, Nan Wang, Qingqiang Zhou, Yufei Zhao, Yuchao Zhang, Xunli Lü, Hongying Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title | Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title_full | Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title_fullStr | Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title_full_unstemmed | Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title_short | Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
title_sort | dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051941/ https://www.ncbi.nlm.nih.gov/pubmed/35498473 http://dx.doi.org/10.1039/d0ra00913j |
work_keys_str_mv | AT haoyanyan dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT jinnan dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT wangqingqiang dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT zhouyufei dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT zhaoyuchao dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT zhangxunli dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor AT luhongying dynamicsandcontrollabilityofdropletfusionundergasliquidliquidthreephaseflowinamicrofluidicreactor |