Cargando…
TL-med: A Two-stage transfer learning recognition model for medical images of COVID-19
The recognition of medical images with deep learning techniques can assist physicians in clinical diagnosis, but the effectiveness of recognition models relies on massive amounts of labeled data. With the rampant development of the novel coronavirus (COVID-19) worldwide, rapid COVID-19 diagnosis has...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051950/ https://www.ncbi.nlm.nih.gov/pubmed/35506115 http://dx.doi.org/10.1016/j.bbe.2022.04.005 |
Sumario: | The recognition of medical images with deep learning techniques can assist physicians in clinical diagnosis, but the effectiveness of recognition models relies on massive amounts of labeled data. With the rampant development of the novel coronavirus (COVID-19) worldwide, rapid COVID-19 diagnosis has become an effective measure to combat the outbreak. However, labeled COVID-19 data are scarce. Therefore, we propose a two-stage transfer learning recognition model for medical images of COVID-19 (TL-Med) based on the concept of “generic domain-target-related domain-target domain”. First, we use the Vision Transformer (ViT) pretraining model to obtain generic features from massive heterogeneous data and then learn medical features from large-scale homogeneous data. Two-stage transfer learning uses the learned primary features and the underlying information for COVID-19 image recognition to solve the problem by which data insufficiency leads to the inability of the model to learn underlying target dataset information. The experimental results obtained on a COVID-19 dataset using the TL-Med model produce a recognition accuracy of 93.24%, which shows that the proposed method is more effective in detecting COVID-19 images than other approaches and may greatly alleviate the problem of data scarcity in this field. |
---|