Cargando…
Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis
BACKGROUND: Diagnostic pathways for myocardial infarction rely on fixed troponin thresholds, which do not recognise that troponin varies by age, sex, and time within individuals. To overcome this limitation, we recently introduced a machine learning algorithm that predicts the likelihood of myocardi...
Autores principales: | Doudesis, Dimitrios, Lee, Kuan Ken, Yang, Jason, Wereski, Ryan, Shah, Anoop S V, Tsanas, Athanasios, Anand, Atul, Pickering, John W, Than, Martin P, Mills, Nicholas L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052331/ https://www.ncbi.nlm.nih.gov/pubmed/35461689 http://dx.doi.org/10.1016/S2589-7500(22)00025-5 |
Ejemplares similares
-
Influence of Age on the Diagnosis of Myocardial Infarction
por: Lowry, Matthew T.H., et al.
Publicado: (2022) -
Cardiac Troponin Thresholds and Kinetics to Differentiate Myocardial Injury and Myocardial Infarction
por: Wereski, Ryan, et al.
Publicado: (2021) -
Machine Learning to Predict the Likelihood of Acute Myocardial Infarction
por: Than, Martin P., et al.
Publicado: (2019) -
Improving Risk Stratification for Patients With Type 2 Myocardial Infarction
por: Taggart, Caelan, et al.
Publicado: (2023) -
Troponin in early presenters to rule out myocardial infarction
por: Lowry, Matthew T H, et al.
Publicado: (2023)