Cargando…
Deep learning from multiple experts improves identification of amyloid neuropathologies
Pathologists can label pathologies differently, making it challenging to yield consistent assessments in the absence of one ground truth. To address this problem, we present a deep learning (DL) approach that draws on a cohort of experts, weighs each contribution, and is robust to noisy labels. We c...
Autores principales: | Wong, Daniel R., Tang, Ziqi, Mew, Nicholas C., Das, Sakshi, Athey, Justin, McAleese, Kirsty E., Kofler, Julia K., Flanagan, Margaret E., Borys, Ewa, White, Charles L., Butte, Atul J., Dugger, Brittany N., Keiser, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052651/ https://www.ncbi.nlm.nih.gov/pubmed/35484610 http://dx.doi.org/10.1186/s40478-022-01365-0 |
Ejemplares similares
-
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
por: Wong, Daniel R., et al.
Publicado: (2023) -
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
por: Wong, Daniel R., et al.
Publicado: (2023) -
Quantitative neuropathology: an update on automated methodologies and implications for large scale cohorts
por: Walker, Lauren, et al.
Publicado: (2017) -
Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future
por: Shakir, Mustafa N, et al.
Publicado: (2022) -
LATE-NC staging in routine neuropathologic diagnosis: an update
por: Nelson, Peter T., et al.
Publicado: (2022)