Cargando…
De Novo Crystal Structure Determination from Machine Learned Chemical Shifts
[Image: see text] Determination of the three-dimensional atomic-level structure of powdered solids is one of the key goals in current chemistry. Solid-state NMR chemical shifts can be used to solve this problem, but they are limited by the high computational cost associated with crystal structure pr...
Autores principales: | Balodis, Martins, Cordova, Manuel, Hofstetter, Albert, Day, Graeme M., Emsley, Lyndon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052749/ https://www.ncbi.nlm.nih.gov/pubmed/35416661 http://dx.doi.org/10.1021/jacs.1c13733 |
Ejemplares similares
-
A Machine Learning Model of Chemical Shifts for Chemically
and Structurally Diverse Molecular Solids
por: Cordova, Manuel, et al.
Publicado: (2022) -
Rapid Structure Determination of Molecular Solids
Using Chemical Shifts Directed by Unambiguous Prior Constraints
por: Hofstetter, Albert, et al.
Publicado: (2019) -
Bayesian probabilistic assignment of chemical shifts in organic solids
por: Cordova, Manuel, et al.
Publicado: (2021) -
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Chemical
Shift-Dependent Interaction Maps in Molecular
Solids
por: Cordova, Manuel, et al.
Publicado: (2023)