Cargando…
Strain engineering and lattice vibration manipulation of atomically thin TaS(2) films
Beside the extraordinary structural, mechanical and physical properties of two-dimensional (2D) materials, the capability to tune properties via strain engineering has shown great potential for nano-electromechanical systems. External strain, in a controlled manner, can manipulate the optical and el...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053043/ https://www.ncbi.nlm.nih.gov/pubmed/35498846 http://dx.doi.org/10.1039/d0ra02499f |
Sumario: | Beside the extraordinary structural, mechanical and physical properties of two-dimensional (2D) materials, the capability to tune properties via strain engineering has shown great potential for nano-electromechanical systems. External strain, in a controlled manner, can manipulate the optical and electronic properties of the 2D materials. We observed the lattice vibration modulation in strained mono- and few-layer tantalum sulfide (TaS(2)). Two Raman modes, E(1g) and E(1)(2g), exhibit sensitive strain dependence, with the frequency of the former intensity increasing and the latter decreasing under a compressive strain. The opposite direction of the intensity shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to strain-induced competition between the electron–phonon interlayer coupling and possible stacking-induced changes of the intralayer transport. Our results enrich the understanding of the lattice vibration of TaS(2) and point to strain engineering as a powerful tool for tuning the electron–phonon coupling of 2D materials. |
---|