Cargando…

Facile template-free synthesis of multifunctional 3D cellular carbon from edible rice paper

Edible rice paper wrapper is found to be an interesting precursor of a porous and light-weight carbon material. During pyrolysis, material samples show significant differences in length change, displaying typical 20–25% shrinking in the in-plane directions, and strongly expanding (up to 500%) across...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Monsur, Weidler, Peter G., Heissler, Stefan, Mager, Dario, Korvink, Jan G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053079/
https://www.ncbi.nlm.nih.gov/pubmed/35498854
http://dx.doi.org/10.1039/d0ra01447h
Descripción
Sumario:Edible rice paper wrapper is found to be an interesting precursor of a porous and light-weight carbon material. During pyrolysis, material samples show significant differences in length change, displaying typical 20–25% shrinking in the in-plane directions, and strongly expanding (up to 500%) across their out-of-plane direction. This results in a template-free synthesis of a 3D network of cellular carbon material. The out-of-plane expansion also allows for fabrication of 3D shapes of cellular carbon material from the 2D precursor. The rice paper derived carbon material features a hierarchical porosity, resulting in a specific surface area ranging from 6 m(2) g(−1) to 239 m(2) g(−1) depending on the synthesis temperature. The carbon material has a density of 0.02–0.03 g cm(−3), and a higher modulus-density ratio than reported for other cellular carbon materials. It is mechanically stiff and exhibits excellent fire-resistant properties.